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• ABSTRACT: Analysis of degradation data have become a significant approach to ac-
cess reliability and security of critical systems. When it is possible to measure degra-
dation, generally we have more information comparing to traditional lifetime data, so
that we can evaluate and turn better product reliability. In general, products degrade
with age or due to some features called covariates. In addition, degradation is a kind
of stochastic process, so it can be modeled in many different approaches. A lot of
prediction models were developed for taking into account the concept of degradation.
There is a variability of research in the literature about degradation modeling and reli-
ability evaluation using degradation data, see Ma (2007); Meeker and Escobar (1998);
Singpurwalla (1995); Van Noortwijk (2009). Degradation is modeled by a stochastic
process Y (t), with some proprierties, depending on phenomenons considered, such as
Lévy process, Wiener process, Gamma Process and Inverse Gaussian Process. An
Inverse Gaussian process allows nonconstant variance and nonzero correlation among
data collected at different time points, and the mean function characterizes a mono-
tonic increasing process. In this work, we propose a decision rule for classifying a unit
as normal or weak, and give an economic model for determining the optimal termina-
tion time and other parameters of a burn-in test. We studied a real laser data set in the
literature and developed a simulation study to illustrate the proposed methodology.

• Key Words: burn-in test; degradation data; optimal termination time; Inverse Gaus-
sian Process.

1 Introduction
As pointed by Meeker and Escobar (1998), some life tests result in a few or no failures.

In such cases, it is difficult or impossible to assess reliability with traditional life tests that
record only time-to-failure. In this sense, degradation tests are useful to access reliability
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information of products. Degradation phenomenon is a kind of stochastic process; therefore,
it could be modeled in several approaches. Gorjian et al. (2010) presented a review of degra-
dation models, describing a lack of models with advantages and limitations. We can find two
techniques of degradation modeling: the general path model introduced by Lu and Meeker
(1993); Meeker and Escobar (1998) and models derived from physical principles via stochas-
tic processes. The general path model is the classical approach, which fits the degradation
observations by a regression model with random coefficients. The second approach for mod-
eling degradation is through stochastic process. Wang (2010) presented a Wiener process
with random effects for degradation data. Tradicional Burn-in policies consist in observe
products during a fixed period of time, observing failures, and separating those items before
they are shipped to the costumers. However, when we lead with high reliable products,
with a few or no failures, we observe the degradation of some quality characteristic, then
we construct a cost model to determine the optimal burn-in time. As an example, we con-
sider the light intensity of a light emitting diode (LED), where the light intensity decreases
(degrades) over time, and the lamp is considered failed when its intensity reaches a critical
value d. So, if we can model the degradation path of light intensity properly and classify a
unit as normal or weak after observing its initial degradation path. Tsai et al. (2011) used
optimal burn-in tests with mixed Gamma Process to describe degradation paths. Tseng
et al. (2003) proposed a more flexible burn-in procedure, taking into account the burn-in
time and the number of collecting points in the decision rule (called window size), and used
Wiener Process to describe the degradation paths. In this work, we use Inverse Gaussian
Process (IG Process) to describe the degradation paths.

This paper is organized as follows. Section 2 describes the proposed method, based on
Mixture Inverse Gaussian process. In Section 3 we describe the optimal burn-in time proce-
dure, based on the proposed cost model. Section 4 describes the estimation of parameters.
Section 5 contains a numerical example on LED, while Section 6 presents a simulation study
and Section 7 ends with some comments and conclusion.

2 Degradation Model
Let D(t), t ≥ 0, denote the degradation path of a specific quality characteristic of a

product, and d denote its critical level. Then, the product’s lifetime is suitably defined as
the first passage time when D(t) falls below the critical value d. That is,

T = inf {t ≥ 0|D(t) ≤ d} . (1)
the first time when D(t) crosses the critical value d is the product lifetime T.

We propose to use an Inverse Gaussian Process to model the degradation path D(t).
This process has monotone paths and was first proposed by Wasan (1968), based on Inverse
Gaussian (IG) distribution.

The IG distribution (Chhikara, 1988) has the following p.d.f.
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fIG(y|µ, λ) =
√

λ

2πy3 × exp
[
−λ(y − µ)2

2µ2y

]
, (2)

where y > 0, µ > 0 is the mean and λ > 0 is the shape parameter.
The c.d.f. for IG distribution is given by

FIG(y|µ, λ) = Φ
[
λ

y

(
y

µ
− 1

)]
+ exp

(
2λ
µ

)
Φ
[
−λ
y

(
y

µ
+ 1

)]
(3)

where Φ(.) is the standard normal c.d.f..
This distribution has close relation with Wiener process with drift, being the first passage

time of a Wiener Process with drift.
The degradation path D(t) with IG distribution is given by

D(t) ∼ IG
(
g(t), ηg(t)2

)
, (4)

where g(t) > 0,∀t ≥ 0 is a monotone increasing function, as for example, g(t) = µt describes
a linear increasing function without intercept, with µ > 0, and η > 0

The stochastic process in (4) has the following properties:

1. D(0) = 0 q.c.;

2. Let Y = D(t) − D(s) the degradation increment in the time interval [s, t], with t >
s > 0. Then Y has the following distribution

Y ∼ IG
(
g(t)− g(s), η (g(t)− g(s))2

)
, ∀t > s ≥ 0, (5)

where g(t)− g(s) is the increment in the mean function g(.) in the time interval [s, t].

3. Increments are independent.

The function g(t) has a meaningful interpretation, being the mean function of the process,
and the parameter η is inversely proportional to the volatility (or variance) of the stochastic
process:

E [D(t)] = g(t) and V AR [D(t)] = g(t)
η
.

Suppose there exists a proportion of weak equipments 0 < p < 1 before conducting a
burn-in test. Then a Mixture Inverse Gaussian Model is more appropriated for this kind of
data.

Let g1(t) and g2(t) the mean functions for the weak group and normal group, respectively,
then the degradation paths D(t) are given by the following form:
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D(t) ∼
 IG

(
g1(t), η1 [g1(t)]2

)
, for weak group,

IG
(
g2(t), η2 [g2(t)]2

)
, for typical group,

(6)

where g1(t) > g2(t) > 0,∀t ≥ 0, and η1 > 0 and η2 > 0, that is, the mean function of the
degradation process is greater in weak group than normal group.

From (6), we can derive two particular cases:

Case 1: When the degradation paths of typical group have the same volatility parameter
η1 = η2 = η, we have

D(t) ∼
 IG

(
g1(t), η [g1(t)]2

)
, for weak group,

IG
(
g2(t), η [g2(t)]2

)
, for typical group,

(7)

Case 2: Furthermore, when g1(t) = g2(t) = g(t), i.e. the degradation paths of typical
and weak groups have the same mean function, we have

D(t) ∼
 IG

(
g(t), η1 [g(t)]2

)
, for weak group,

IG
(
g(t), η2 [g(t)]2

)
, for typical group,

(8)

3 Burn-in test and Optimal Burn-in time
A Burn-in test is the process by which components of a system are exercised prior to being

placed in service. In general, this process will force certain failures to occur under supervised
conditions so an understanding of load capacity of the product can be established. For highly
reliable products such as LED lamps we have a few or no failures, then we must propose
a method to screen (or classify) the weak items from typical items, based on degradation
characteristics of such components. Then we have interest in determine the optimal burn-in
time (or termination time) enough to screen the components.

Let tb the burn-in time. The decision rule used to classify weak units and normal units
is given by

R: An item is classified as a normal item at burn-in time tb if

(tb) ≤ ξ(tb), (9)
where ξ denotes the unknown cutoff point at burn-in time tb, which has to be determined.

For fixed burn-in time tb , we have the following associated misclassification probabilities:

α(tb) = P (misclassifying a normal item as weak item)
= P (D(tb) > ξ(t),
= 1− FIG(g2(tb), η2 [g2(tb)]), (10)
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where FIG(.) is defined in (3).
In the same way,

β(tb) = P (misclassifying a weak item as normal item)
= P (D(tb) < ξ(tb),
= FIG(g2(tb), η2 [g2(tb)]) (11)

3.1 Misclassification cost and optimal cutoff point
Let n denote the total number of units subject to a burn-in test, and p denote the

proportion of the weak units. Since we have the probabilities of misclassification α(tb) and
β(tb) given in (10) and (11), we can introduce a cost model.

Let Cα the unit cost of misclassifying a typical item as weak item, and Cβ the unit cost
of misclassifying a weak item as typical item, then we have the cost of misclassification the
items as a result of the decision rule (9):

MC (ξ(tb)) = Cαn(1− p)α(tb) + Cβnpβ(tb), (12)
The optimal cutoff points are cutoff points which results in the minimum misclassification

cost. The optimal cutoff points ˆξ(tb) are obtained by minimization of (12).

Theorem 1: For a fixed burn-in time tb and under model (6), the optimal cutoff point is
obtained by the following equation

−(ξ(tb)− g1(tb))2 η1

2η1
+ (ξ(tb)− g2(tb))2 η2

2η2
= log

[
Ca(1− p)

√
η2g2(tb)

Cbp
√
η1g1(tb)

]
, (13)

which has two real roots:

ξ̂(tb)1 =
g1(tb)η1 − g2(tb)η2 − log

[
Ca(1−p)√η2g2(tb)
Cbp
√
η1g1(tb)

]
+ 1

2

√
∆

η1 − η2

ξ̂(tb)2 =
g1(tb)η1 − g2(tb)η2 − log

[
Ca(1−p)√η2g2(tb)
Cbp
√
η1g1(tb)

]
− 1

2

√
∆

η1 − η2
,

(14)

where ∆ = −4(η1 − η2)(g2
1(tb)η1 − g2

2(tb)η2 + 4
(
−g1(tb)η1 + g2(tb)η2 + log

[
Ca(1−p)√η2g2(tb)
Cbp
√
η1g1(tb)

])2

Proof: The proof is presented in the Appendix.
There are two real roots for (13), and we have to check the value of second derivative

with respect to ξ(tb).
The second derivative of (12) with respect to ξ(tb) is given by
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∂2MC (ξ(tb))
∂2ξ(tb)

=
n

(
Cbe

− (ξ(tb)−g1(tb))2
η1

2ξ(tb) g1(tb)p
√

η1
ξ(tb)

a1 − Cae
− (ξ(tb)−g2(tb))2

η2
2ξ(tb) g2(tb)(−1 + p)

√
η2
ξ(tb)

a2

)
2ξ(tb)3

√
2π

,

(15)
where a1 = −3ξ(tb)− ξ(tb)2η1 + g1(tb)2η1 and a2 = 3ξ(tb) + ξ(tb)2η2 − g2(tb)2η2.

We must take the solution which results in function (15) being positive, which means we
found out a global minimum value for the misclassification cost in (12).

Corollary 1: For a fixed burn-in time tb and under model (7), the optimal cutoff point is
given by

̂ξ(tb) = (g1(tb)− g2(tb)) (g1(tb) + g2(tb)) η
(2 (g1(tb)− g2(tb)) η − 2 log

[
Ca(1−p)g2(tb)
Cbpg1(tb)

] (16)

Proof: The proof is presented in the Appendix.

Corollary 2: For a fixed burn-in time tb and under model (8), the optimal cutoff point is
obtained by the following equation

−(ξ(tb)− g(tb))2 η1

2η1
+ (ξ(tb)− g(tb))2 η2

2η2
= log

[
Ca(1− p)

√
η2

Cbp
√
η1

]
, (17)

which has two real roots:

ξ̂(tb)1 =
g(tb)η1 − g(tb)η2 − log

[
Ca(1−p)√η2
Cbp
√
η1

]
+
√

∆
η1 − η2

ξ̂(tb)2 =
g(tb)η1 − g(tb)η2 − log

[
Ca(1−p)√η2
Cbp
√
η1

]
−
√

∆
η1 − η2

,

(18)

where ∆ = −4g2(tb)(η1 − η2)2 +
(
2g(tb)(η1 − η2)− 2 log

[
Ca(1−p)√η2
Cbp
√
η1

])2
.

Proof: The proof is presented in the Appendix.

In addiction to the misclassification cost, we also need to pay attention to test costs that
include the cost of conducting the degradation test, and the cost of measuring the data.

Suppose t = 0, t1, . . . , tl are the check points of a burn-in test, then the total number of
data collection points at tb is b+ 1 for 1 ≤ b ≤ l.

Let Cop the cost of operating the degradation test per unit of time, such as labor and
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indirect labor costs and Cmea the cost of measuring data on a unit, such as costs of setting
up the measuring equipment.

The total cost of misclassification for each burn-in time tb is given by

TC (ξ(tb)) = MC (ξ(tb)) + Cop × n× tb + Cmea × n× (b+ 1). (19)
where MC (ξ(tb)) is given in (12). The optimal burn-in time tb is obtained by minimizing
(19).

4 Likelihood function
Consider a sample of n units, being observed up to time tb (burn-in time), with collecting

points t0, t1, t2, . . . , tb and degradation values D(t1), . . . , D(tb).
For each unit i and 1 ≤ j ≤ b, define Yij = D(tj)−D(tj−1) the degradation increment in

the time interval [tj−1, tj]. Considering (5) and model (6), the probability density function
for Yij is given by:

fYij(yij) = p

√
η1

2πy3
ij

∆g1(tj)e
−
η1(yij−∆g1(tj))2

2yij + (1− p)
√

η2

2πy3
ij

∆g2(tj)e
−
η2(yij−∆g2(tj))2

2yij (20)

where ∆g1(tj) = g1(tj)− g1(tj−1) is the time-function increment in the time interval [tj−1, tj]
under weak items and ∆g2(tj) = g2(tj) − g2(tj−1) is the time-function increment the time
interval [tj−1, tj] under normal items.

The likelihood function is given by:

L(g1(t)), g2(t), η1, η2, p) =
n∏
i=1

p b∏
j=1

√
η1

2πy3
ij

∆g1(tj)e
−
η1(yij−∆g1(tj))2

2yij +

(1− p)
b∏

j=1

√
η2

2πy3
ij

∆g2(tj)e
−
η2(yij−∆g2(tj))2

2yij

 . (21)

And the log-likelihood function is given by:

l(g1(t), g2(t), η1, η2, p) =
n∑
i=1

log p
b∏

j=1

√
η1

2πy3
ij

∆g1(tj)e
−
η1(yij−∆g1(tj))2

2yij

+ (1− p)
b∏

j=1

√
η2

2πy3
ij

∆g2(tj)e
−
η2(yij−∆g2(tj))2

2yij

 (22)

The functions g1(.) and g2(.) have to be specified, being indexed by a parameter vector.
The maximum likelihood estimates (MLEs) for the parameters can be obtained by direct
maximization of (22) with respect to the parameters. Intervals estimates and hypothesis
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tests are obtained asymptotically.
Similarly, the likelihood functions for model (7) and (8) are obtained.
The criterion used to evaluate the different models is the Akaike information criterion

(AIC), which is frequently used in statistical literature in model selection and defined as

AIC = 2m− 2l, (23)
where m is the number of model parameters, and l is the maximized value of the log-
likelihood function of the estimated model. The model with the smallest AIC among all
models is selected as the best fitting model.

5 Application with laser data
Some devices for light amplification by the stimulated emission of called LASER (Light

Amplication by Stimulated Emission of Radiation) present degradation over time, which
brings a reduction of the emitted light. This luminosity can be maintained substantially
constant, with an increase of operating current. When this current reaches a very high
value, it is considered that there was a device failure. Meeker and Escobar (1998) presented
a study with degradation data of 15 LASER units from GaAs type (compound with Gal-
lium and Arsenic elements), with observations made at 4.000 hours of operation, with time
intervals: t0 = 0, t1 = 250, t2 = 500, t3 = 750, . . . , t16 = 4.000. For each unit and time, the
degradation measure is the percent increase in current over time, related to the nominal cur-
rent. In this experiment the degradation measures are the percentage of increase in current
for each unit, and laser unit is considered not working when degradation measure reachs
10% (threshold=10%). Figure 1 shows the degradation paths for Laser data.

From Figure 1 we conclude that the Mixture IG degradation Process can be represented
by two mean functions g1(t) = µ1t and g2(t) = µ2t, for weak group and typical group, re-
spectively, with µ1 > µ2 > 0.

In this laser data, we treated three items having higher degradation paths as weak group,
while twelve items having lower degradation paths are in the typical group.

In addition, we present the Mixture Wiener Process model (Tseng and Tang, 2001) and
the Mixture Gamma Process (Tsai et al., 2011) for analysis of laser degradation data. The
aim here is to compare Mixture IG Process model with these well known models in the
literature.

The Mixture Wiener Process (Tseng and Tang, 2001) for the degradation up to time t
D(t) is given by

D(t) ∼
{
µ1t+ σB(t), for weak group,
µ2t+ σB(t), for typical group, (24)

where µ1 and µ2 denote the drift parameters for weak and typical groups, respectively, σ is
diffusion coefficient and B(t) is a standard Brownian motion.
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Figure 1: Degradation paths of GaAs laser current.

The Mixture Gamma Process (Tsai et al., 2011) for the degradation up to time t D(t) is
given by

D(t) ∼
{

Gamma (g1(t), ν) for weak group,
Gamma (g2(t), ν) , for typical group, (25)

where g1(t) > g2(t) are shape functions that take the forms g1(t) = µ1t and g2(t) = µ2t with
µ1 > µ2 and ν > 0 is the scale parameter.

Figure 2 shows the quantile-quantile (Q-Q) plot for the degradation increments, consid-
ering models (6), (7), (8), (24) and (25).
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Figure 2: Q-Q plots for laser data.
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The results show that Gamma and IG Processes are more suitable for describing laser
data than Wiener Process (p-value < 0.05 for typical items).

Table 1 show the MLEs for parameters and the corresponding log-likelihood and AIC
values for models (6), (7), (8), (24) and (25).

Table 1: MLEs for parameters and AIC values, considering Laser dataset.
Model Parameters MLEs logL AIC

(6) µ1 0.0027 102.13 −194.26
µ2 0.0018
η1 16.0320
η2 19.2410
p 0.2660

(7) µ1 0.0027 101.79 −195.59
µ2 0.0018
η 18.234
p 0.2661

(8) µ1 0.0020 76.583 −145.17
η1 31.8490
η2 11.7470
p 0.1610

(24) µ1 0.0028 73.6541 −139.31
µ2 0.0018
σ 0.0109
p 0.2156

(25) µ1 0.0519 97.1152 −186.23
µ2 0.0345
ν 0.0521
p 0.2646

From Table 1, we note that the model (7) has the smallest AIC value. This IG process
consider different mean functions for weak group and typical group and equals volatility
parameters for both groups. Considering the model (7) which has the best fit in laser
degradation data, we selected this model for illustrating the optimal burn-in policy.

Let Cα = 65, Cβ = 90, Cop = 0.0009 and Cmea = 0.0005 then we can determine the burn
in test quantities of interest. Table 2 show the estimated Misclassification Probabilities ((10)
and (11)), the Optimal Cutoff point (16) and the Total Cost (19), obtained with the MLEs
of parameters.
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Table 2: Misclassification Probabilities, Optimal Cutoff point and Total Cost.

tb 250 500 750 1000 1250 1500 1750 2000
ξ∗(tb) 0.60412 1.1639 1.7247 2.2858 2.8470 3.4082 3.9694 4.5307
α(tb) 0.1519 0.1204 0.0929 0.0718 0.0557 0.0435 0.0341 0.0268
β(tb) 0.4054 0.2673 0.1911 0.1414 0.1067 0.0815 0.0629 0.0488

T.Cost(tb) 257.7500 188.9700 145.2900 115.7100 95.1340 80.7090 70.6470 63.7670

tb 2250 2500 2750 3000 3250 3500 3750 4000
ξ∗(tb) 5.0920 5.6533 6.2146 6.7759 7.3372 7.8985 8.4598 9.0211
α(tb) 0.0211 0.0167 0.0132 0.0105 0.0083 0.0066 0.0053 0.0042
β(tb) 0.0381 0.0299 0.0235 0.0186 0.0147 0.0116 0.0092 0.0074

T.Cost(tb) 59.2490 56.5100 55.1230 54.7750 55.2270 56.3020 57.8620 59.8010

From Table 2, we observe that the smallest total cost is 54.7750 at time 3000 hours of
operation. Then, the optimal burn-in time is 3000 hours and the optimal cutoff point is
6.7759.

6 Simulation Study
A simulation study was developed. N=1.000 datasets with sample size n=200 were

generated. We generated the datasets through the IG Process model (7). The true values
for parameters are the MLEs in Table 1. We made inferences in parameters considering the
IG Process model (7), Wiener Process model (24) and Gamma Process model (25). In other
words, we generated data with IG Process and estimated parameters with Wiener Process
and Gamma Process, then we have the effect of mispecifying a mixed IG process as a Mixed
Wiener Process or Gamma Process.

Table 3 show the MLEs for parameters. We note that the MLEs in the simulated data
are close to true parameters in Table 1.
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Table 3: MLEs for parameters, considering simulated data.
Model Parameters MLEs

(7) µ1 0.0027
µ2 0.0018
η 18.238
p 0.2665

(24) µ1 0.0027
µ2 0.0018
σ 0.0106
p 0.2656

(25) µ1 0.0527
µ2 0.0352
v 0.0521
p 0.2670

Let α̂(k)
IG(t), β̂(k)

IG (t), ξ̂∗(k)
IG (t), T̂C(k)

IG(t) denote the estimated misclassification probabilities,
the cutoff point, and the total cost of the k−trial under model (7), respectively. The mis-
classification probabilities, the optimal cutoff point and the total cost under model (7) are
then estimated empirically as

αIG(tb) = 1
N

N∑
k=1

α̂
(k)
IG(tb),

βIG(tb) = 1
N

N∑
k=1

β̂
(k)
IG (tb),

ξ
∗
IG(tb) = 1

N

N∑
k=1

ξ̂
∗(k)
IG (tb),

TCIG(tb) = 1
N

N∑
k=1

T̂C
(k)
IG(tb).

In a similar manner, we estimated the misclassification probabilities, the optimal cutoff
point and the total cost under model (24), and denoted them by

αW (tb), βW (tb), ξW (tb) and TCW (tb),
and the misclassification probabilities, the optimal cutoff point and the total cost under
model (25) are given by

αG(tb), βG(tb), ξG(tb) and TCG(tb).
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Tables 4, 4 and 6 show the Estimated Misclassification probabilities, optimal cutoff and
Total Cost considering models (7), (24) and (25), respectively.

Table 4: Estimated Misclassification probabilities, optimal cutoff and Total Cost considering
model (7).

tb 250 500 750 1000 1250 1500 1750 2000
ξIG(tb) 0.6062 1.1667 1.7288 2.2912 2.8537 3.4163 3.9790 4.5416
αIG(tb) 0.1518 0.1192 0.0914 0.0702 0.0543 0.0421 0.0329 0.0257
βIG(tb) 0.4034 0.2645 0.1881 0.1385 0.1041 0.0792 0.0608 0.0471
TCIG(tb) 3384.9 2470.8 1892.4 1502.8 1233.5 1045.9 916.13 828.30

tb 2250 2500 2750 3000 3250 3500 3750 4000
ξIG(tb) 5.1043 5.6670 6.2297 6.7924 7.3551 7.9178 8.4805 9.0432
αIG(tb) 0.0202 0.0159 0.0126 0.0099 0.0079 0.0063 0.0050 0.0040
βIG(tb) 0.0366 0.0286 0.0224 0.0176 0.0139 0.0110 0.0087 0.0069
TCIG(tb) 771.50 737.96 722.03 719.55 727.43 743.30 765.40 792.34

Table 5: Estimated Misclassification probabilities, optimal cutoff and Total Cost considering
Model (24).

tb 250 500 750 1000 1250 1500 1750 2000
ξW (tb) 0.6492 1.2122 1.7751 2.3381 2.9011 3.4641 4.0271 4.5900
αW (tb) 0.1184 0.0944 0.0718 0.0544 0.0413 0.0315 0.0241 0.0185
βW (tb) 0.4372 0.2784 0.1925 0.1380 0.1011 0.0751 0.0563 0.0425
TCW (tb) 3233.2 2302.5 1728.1 1351.0 1097.3 926.14 812.15 738.91

tb 2250 2500 2750 3000 3250 3500 3750 4000
ξG(tb) 5.1530 5.7160 6.2790 7.4049 7.9679 8.5309 9.0939 10.713
αG(tb) 0.0143 0.0110 0.0085 0.0066 0.0051 0.0040 0.0031 0.0024
βG(tb) 0.0323 0.247 0.0190 0.0146 0.0113 0.0087 0.0068 0.0053
TCG(tb) 695.21 673.22 667.35 673.55 688.84 711.02 738.46 769.90

From Table 4, we observe that the optimal burn-in time considering IG process model
is 3000 hours of operation, and the corresponding optimal cutoff point is 6.7924 and the
results are similar to Table 2. From Tables 5 and 5, we observe that the optimal burn-in
time is 2750 hours for both Wiener and Gamma process models, and the cutoff points are
6.2790 and 6.2077, respectively. Hence, to measure the effect of this model specification,
we analyse the relative bias (RB) of type-I and type-II errors of misclassification.
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Table 6: Estimated Misclassification probabilities, optimal cutoff and Total Cost considering
Model (25).

tb 250 500 750 1000 1250 1500 1750 2000
ξ∗(tb) 0.6244 1.1813 1.7393 2.2977 2.8562 3.4147 3.9733 4.5318
α(tb) 0.1300 0.1027 0.0782 0.0595 0.0454 0.0348 0.0268 0.0207
β(tb) 0.4264 0.2739 0.1911 0.1382 0.1020 0.0763 0.0577 0.0439

T.Cost(tb) 3295.2 2363.4.15 1784.3 1401.1 1141.1 963.76 844.21 766.02

tb 2250 2500 2750 3000 3250 3500 3750 4000
ξ(tb) 5.0904 5.6491 6.2077 6.7663 7.3249 7.8836 8.4422 9.0008
α(tb) 0.0160 0.0124 0.0097 0.0076 0.0059 0.0046 0.0036 0.0029
β(tb) 0.0336 0.0259 0.0200 0.0155 0.0120 0.0094 0.0073 0.0057

T.Cost(tb) 718.00 692.28 683.24 686.74 699.77 720.06 745.90 776.02

For each burn-in time tb, the RB of model misspecification for a IG degradation model
be mistakenly treated as a mixture Wiener process is given by

RBαW (tb) = αW (tb)− αIG(tb)
αIG(tb)

and RBβW (tb) = βW (tb)− βIG(tb)
βIG(tb)

.

Similarly, the RB of model misspecification for a IG degradation model be mistakenly
treated as a mixture Gamma process is given by

RBαG(tb) = αG(tb)− αIG(tb)
αIG(tb)

and RBβG(tb) = βG(tb)− βIG(tb)
βIG(tb)

.

Tables 7 and 8 present the relative bias considering Wiener Process model and Gamma
process model RBαW (tb) and RBαG(tb), respectively.

Table 7: Relative Bias of Type I and Type II errors of misclassification.

tb 250 500 750 1000 1250 1500 1750 2000
RBαW (tb) −0.2200 −0.2084 −0.2143 −0.2252 −0.2381 −0.2518 −0.2657 −0.2798
RBβW (tb) 0.0838 0.0524 0.0231 −0.0037 −0.0286 −0.0521 −0.0745 −0.0959

tb 2250 2500 2750 3000 3250 3500 3750 4000
RBαW (tb) −0.2938 −0.3076 −0.3212 −0.3346 −0.3477 −0.3606 −0.3732 −0.3855
RBβW (tb) −0.1165 −0.1363 −0.1555 −0.1740 −0.1919 −0.2094 −0.2263 −0.2427
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Table 8: Relative Bias of Type I and Type II misclassification probabilities for Gamma
Process

tb 250 500 750 1000 1250 1500 1750 2000
RBαG(tb) −0.1441 −0.1380 −0.1437 −0.1526 −0.1628 −0.1737 −0.1847 −0.1959
RBβG(tb) 0.0571 0.0356 0.0156 −0.0026 −0.0198 −0.0361 −0.0517 −0.0668

tb 2250 2500 2750 3000 3250 3500 3750 4000
RBαG(tb) −0.2070 −0.2180 −0.2290 −0.2399 −0.2506 −0.2611 −0.2720 −0.2820
RBβG(tb) −0.0814 −0.0957 −0.1095 −0.1231 −0.1363 −0.1492 −0.1619 −0.1743

From Table 7 we note that type-I error of misclassification is underestimated for all burn-
in times, while type-II error of misclassification is overestimated only the first three burn-in
times and underestimated for all other burn-in times. Moreover, the most negative value for
RBαG is −38.55% in burn-in time 4000 hours of operation and the most negative value for
RBβG is −24, 27% in burn-in time 4000 hours of operation.

From Table 8 we note that type-I error of misclassification is underestimated for all burn-
in times, while type-II error of misclassification is overestimated only the first three burn-in
times and underestimated for all other burn-in times. Moreover, the most negative value for
RBαG is −28.20% in burn-in time 4000 hours of operation and the most negative value for
RBβG is −17, 43% in burn-in time 4000 hours of operation.

This results show that model misspecification influences in the missclassification proba-
bilities, which impacts in the optimal burn-in costs.

7 Final Remarks
In highly reliable products where we have a few or no failures, is quite dificult to de-

termine the optimal burn-in time before such product be derivered to costumers, then the
optimal burn-in time can be obtained with the degradation values. In this paper we proposed
a Mixture IG Process to model the degradation paths of the products, and we presented a
decision rule in order separate the weak items to typical items. Then we determined the
optimal cutoff points and the optimal burn-in time based on a cost model. In the applica-
tion with real data, the proposed IG process fits better than Mixture Wiener and Gamma
process. In the simulated data, we have shown that model misspecification results influences
in the missclassification probabilities and impacts in the optimal burn-in costs.
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APPENDIX
Proof of Theorem 1:

Taking the first derivative of (12) with respect to ξ(tb), we have

∂MC (ξ(tb))
∂ξ(tb)

=
n

(
Cbe

− (ξ(tb)−g1(tb))2
η1

2ξ(tb) g1(tb)p
√

η1
ξ(tb)

+ Cae
− (ξ(tb)−g2(tb))2

η2
2ξ(tb) g2(tb)(−1 + p)

√
η2
ξ(tb)

)
ξ(tb)
√

2π
(26)

Setting (26) in zero

∂MC (ξ(tb))
∂ξ(tb)

= 0,

then we obtain (13). The two roots are obtained through Bhaskara formula.

Proof of Corollary 1:

Assuming η1 = η2 = η in (13) then we have a linear equation with respect to ξ(tb).

Proof of Corollary 2:

Assuming g1(tb) = g2(tb) = g(tb) in (13) then we have (17) and the optimal cutoff point
is obtained similarly to Theorem 1.
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