

MACHINE LEARNING FOR ESTIMATION IN IRT MODELS

Mariana Curi University of São Paulo, Brazil mcuri@icmc.usp.br

work developed in collaboration with ACTNext, ACT Inc.: Benjamin Deonovic Pravin Chopade Gunter Maris

thanks to ACTNext and FAPESP (2018/21063-4) for funding support

CONTENT

- Motivation
- Variational autoencoder (VAE)
- Proposed estimation method: VAE-Q2PL
- Simulation study
- Conclusions

MOTIVATION

- traditional IRT estimation methods: MCMC and MML
- ightharpoonup infeasible for high-dimensional heta (latent traits)
- maximum of 8 latent traits found in literature
- time consuming
- ightharpoonup guide the interpretation of heta (experts knowledge)

VAE: KINGMA AND WELLING, 2014

UNSUPERVISED deep artificial neural network

VAE: KINGMA AND WELLING, 2014

UNSUPERVISED deep artificial neural network

$$z_k = \frac{1}{1 + e^{-\sum_{i=1}^{p} w_{ik} x_i + b_k}}$$
 and $z_1^* = \frac{1}{1 + e^{-\sum_{h=1}^{k} w_{h1}^* z_h + b_1^*}}$

VAE: LOSS FUNCTION

- ▶ approach $f(\theta|\mathbf{x})$ by $q(\theta|\mathbf{x})$ that can reconstruct the data
- loss function:

$$\underset{q(\theta|\mathbf{x}) \in G}{\operatorname{argmin}} KL[q(\theta|\mathbf{x})||f(\theta|\mathbf{x})],$$

analogous to maximize ELBO:

$$E_{\theta \sim q_{\alpha}(\theta|\mathbf{x})}[logP_{\beta}(\mathbf{X} = \mathbf{x}|\theta)] - \mathit{KL}[q_{\alpha}(\theta|\mathbf{x})||f(\theta)]$$

PROPOSED IRT ESTIMATION METHOD: VAE-Q2PL

Proposed modification: no hidden layer in the decoder (2PL) and output layer not dense (non-negative weights).

VAE-Q2PL

Curi et al, 2019

- ▶ 28 item assessment with 3 latent skills
- ▶ 5K and 10K individuals: good results

Converse et al, 2019

▶ VAE better than (regular) autoencoder (Guo et al, 2017)

SIMULATIONS: SCENARIO

# Dimensions (d)	# items (i)						
and Estimation	28	56	90	180	270	360	
3 MML	Х						
3 VAE	х	х					
11 VAE		х	х				
21 VAE			х	х	x	х	

- 2PL multidimensional IRT model
- (i x d) Q-matrix: some elements equal to 0
 3D: 28-item English language (Templin 2007, 2013)
 11D and 21D:

SIMPLE
$$\theta_1$$
 COMPLEX ITEMS

1TEMS + 1 2 traits (double) 3 traits (triple)

- ightharpoonup j = 1, ..., 10K individuals, logN for a's and N(0,1) for b's
- ▶ r = 1, ..., 10 replicates
- ▶ Pearson ρ , BIAS = $\sum_{r=1}^{10} \frac{\hat{\zeta}_r \zeta}{10}$, RMSE = $\sqrt{\sum_{r=1}^{10} \frac{(\hat{\zeta}_r \zeta)^2}{10}}$

SIMULATIONS: SCENARIO

# Dimensions (d)	# items (seconds per simulation scenario)							
and Estimation	28	56	90	180	270	360		
3 MML	469							
3 VAE	27	38						
11 VAE		37	46					
21 VAE			49	54	51	55		

- 2PL multidimensional IRT model
- (i x d) Q-matrix: some elements equal to 0
 3D: 28-item English language (Templin 2007, 2013)
 11D and 21D:

SIMPLE
$$\theta_1$$
 COMPLEX ITEMS

1TEMS + 1 2 traits (double) 3 traits (triple)

- ightharpoonup j = 1, ..., 10K individuals, logN for a's and N(0,1) for b's
- ▶ r = 1, ..., 10 replicates
- ▶ Pearson ρ , BIAS = $\sum_{r=1}^{10} \frac{\hat{\zeta}_r \zeta}{10}$, RMSE = $\sqrt{\sum_{r=1}^{10} \frac{(\hat{\zeta}_r \zeta)^2}{10}}$

θ real and estimates correlations: 21D

P(CORRECT RESPONSE): REAL X ESTIMATES

21D and 360 item simulation

REAL X ESTIMATES

	BIAS								
b parameter									
Items	28	56	90	180	270	360			
3D	0.004								
30	0.13	0.07							
11D		0.01	-0.10						
21D			-0.02	-0.03	0.12	-0.01			
2	narame	tor							
	parame			400		252			
Items	28	56	90	180	270	360			
3D	0.01								
30	-0.12	-0.19							
11D		-0.01	-0.15						
21D			-0.07	-0.32	-0.43	-0.47			
Δ	param	otor							
	•								
Items	28	56	90	180	270	360			
3D	0.003								
30	0.03	0.02							
110		0.00	-0.01						
11D		0.00	0.01						

			CORRE	LATION						
b parameter										
	28	56	90	180	270	360	Items			
	0.999						MML			
	0.997	0.999								
		0.98	0.98				VAE			
			0.98	0.97	0.97	0.97				
_	parame	otor								
d	28	56	90	180	270	360				
	0.997	30	90	100	270	300	MML			
							IVIIVIL			
	0.96	0.97								
		0.85	0.91				VAE			
			0.71	0.92	0.96	0.96				
A	param	eter								
۰	28	56	90	180	270	360				
	0.82	30	30	100	270	300	MML			
	0.82	0.88					IVIIVIL			
	0.80	0.88	0.80				VAE			
		0.73	0.67	0.80	0.83	0.88	VAE			
			0.07	0.00	0.63	0.00				

REAL X ESTIMATES: 21D AND 360 ITEM SIMULATION

Conclusions

- VAE has a good recovery of the (M2PL model) parameters
- some bias, in particular for discrimination parameters
- good P(correct answer) prediction
- ▶ the more items, the better the results
- ▶ large sample required (5 to 10K)
- VAE much faster than traditional methods

REFERENCES

- Guo, Q., Cutumisu, M. and Cui, Y. (2017). A Neural Network Approach to Estimate Student Skill Mastery in Cognitive Diagnostic Assessments. In: Xiangen Hu et al. (eds.) Proceedings of the 10th International Conference on Educational Data Mining. EDM 2017
- Kingma and Welling. Auto-Encoding Variational Bayes.
 International Conference on Learning Representations. ICLR, 2014
- Curi, Converse, G., M., Hajewsky, J. and Oliveira, S. Interpretable Variational Autoencoders for Cognitive Models. 2019 International Joint Conference on Neural Networks (IJCNN), 2019.
- ► Converse, G., Curi, M. and Oliveira, S. Autoencoders for Educational Assessment. 20th Annual Conference on Artifical Intelligence in Education (AIED), 2019.

ARTIFICIAL NEURAL NETWORKS (ANN)

ANN

$$net_{jh} = \sum_{i=1}^{p} w_{ih}x_{ji} + b_h$$
 $f(net_{jh}) = \frac{1}{1 + e^{-net_{jh}}} = z_{jh}$

$$net_{jo}^* = \sum_{h=1}^k w_{ho}^* z_{jh} + b_o^*$$
 $\hat{Y}_{jo} = \hat{P}(Y_{jo} = 1) = f^*(net_{jo}^*) = rac{1}{1 + e^{-net_{jo}^*}}$

Activation function $(f(\cdot), f^*(\cdot))$: sigmoid or logistic function, hyperbolic tangent, relu, etc Loss function $(L(y, \hat{y}))$: MSE, cross-entropy, etc

