ACTNEXT

Machine learning for ESTIMATION IN IRT MODELS

Mariana Curi
University of São Paulo, Brazil mcuri@icmc.usp.br

work developed in collaboration with ACTNext, ACT Inc.:
Benjamin Deonovic
Pravin Chopade
Gunter Maris
thanks to ACTNext and FAPESP (2018/21063-4) for funding support

Content

- Motivation
- Variational autoencoder (VAE)
- Proposed estimation method: VAE-Q2PL
- Simulation study
- Conclusions

Motivation

- traditional IRT estimation methods: MCMC and MML
- infeasible for high-dimensional $\boldsymbol{\theta}$ (latent traits)
- maximum of 8 latent traits found in literature
- time consuming
- guide the interpretation of $\boldsymbol{\theta}$ (experts knowledge)

VAE: Kingma and Welling, 2014

UNSUPERVISED deep artificial neural network

VAE: Kingma and Welling, 2014

UNSUPERVISED deep artificial neural network

VAE: LOSS FUNCTION

- approach $f(\boldsymbol{\theta} \mid \boldsymbol{x})$ by $q(\boldsymbol{\theta} \mid \boldsymbol{x})$ that can reconstruct the data
- loss function:

$$
\underset{q(\boldsymbol{\theta} \mid \boldsymbol{x}) \in G}{\operatorname{argmin}} K L[q(\boldsymbol{\theta} \mid \boldsymbol{x})|\mid f(\boldsymbol{\theta} \mid \boldsymbol{x})],
$$

- analogous to maximize ELBO:

$$
E_{\boldsymbol{\theta} \sim q_{\alpha}(\boldsymbol{\theta} \mid \boldsymbol{x})}\left[\log P_{\beta}(\boldsymbol{X}=\boldsymbol{x} \mid \boldsymbol{\theta})\right]-K L\left[q_{\boldsymbol{\alpha}}(\boldsymbol{\theta} \mid \boldsymbol{x}) \| f(\boldsymbol{\theta})\right]
$$

Proposed IRT estimation method: VAE-Q2PL

Proposed modification: no hidden layer in the decoder (2PL) and output layer not dense (non-negative weights),

VAE-Q2PL

CURI et al, 2019

- 28 item assessment with 3 latent skills
- 5 K and 10 K individuals: good results

Converse et al, 2019

- VAE better than (regular) autoencoder (Guo et al, 2017)

Simulations: Scenario

\# Dimensions (d)	\# items (i)					
and Estimation	28	56	90	180	270	360
3 MML	x					
3 VAE	x	x				
11 VAE		x	x			
21 VAE			x	x	x	x

- 2PL multidimensional IRT model
- $(\mathrm{i} \times \mathrm{d})$ Q-matrix: some elements equal to 0

3D: 28-item English language (Templin 2007, 2013)
11D and 21D:
SIMPLE $\quad \theta_{1} \quad$ COMPLEX ITEMS
ITEMS +12 traits (double) 3 traits (triple)

- $\mathrm{j}=1, \ldots, 10 \mathrm{~K}$ individuals, $\log \mathrm{N}$ for a's and $\mathrm{N}(0,1)$ for b 's
- $r=1, \ldots, 10$ replicates
- Pearson $\rho, \mathrm{BIAS}=\sum_{r=1}^{10} \frac{\hat{\zeta}_{r}-\zeta}{10}, \mathrm{RMSE}=\sqrt{\sum_{r=1}^{10} \frac{\left(\hat{\zeta}_{r}-\zeta\right)^{2}}{10}}$

Simulations: Scenario

| \# Dimensions (d) | \# items (seconds per simulation scenario) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| and Estimation | 28 | 56 | 90 | 180 | 270 | 360 |
| 3 MML | 469 | | | | | |
| 3 VAE | 27 | 38 | | | | |
| 11 VAE | | 37 | 46 | | | |
| 21 VAE | | | 49 | 54 | 51 | 55 |

- 2PL multidimensional IRT model
- $(\mathrm{i} \times \mathrm{d})$ Q-matrix: some elements equal to 0

3D: 28-item English language (Templin 2007, 2013)
11D and 21D:
SIMPLE $\quad \theta_{1} \quad$ COMPLEX ITEMS
ITEMS +12 traits (double) 3 traits (triple)

- $j=1, \ldots, 10 \mathrm{~K}$ individuals, $\log \mathrm{N}$ for a's and $\mathrm{N}(0,1)$ for b 's
- $r=1, \ldots, 10$ replicates
- Pearson $\rho, \mathrm{BIAS}=\sum_{r=1}^{10} \frac{\hat{\zeta}_{r}-\zeta}{10}, \mathrm{RMSE}=\sqrt{\sum_{r=1}^{10} \frac{\left(\hat{\zeta}_{r}-\zeta\right)^{2}}{10}}$

θ REAL AND ESTIMATES CORRELATIONS: 21D

Full assessment

90 items	20
-	20
- items	
270 items	
360 items	
-	

P(CORRECT RESPONSE): REAL X ESTIMATES

21D and 360 item simulation

REAL X ESTIMATES

Real x estimates: 21D and 360 item simulation

estimated in repe 1

Latent traits dimension \#6

estimated in rep 1

Latent traits - all

Latent traits - dimension \#16

estimated in rep 1

Conclusions

- VAE has a good recovery of the (M2PL model) parameters
- some bias, in particular for discrimination parameters
- good P (correct answer) prediction
- the more items, the better the results
- large sample required (5 to 10K)
- VAE much faster than traditional methods

References

- Guo, Q., Cutumisu, M. and Cui, Y. (2017). A Neural Network Approach to Estimate Student Skill Mastery in Cognitive Diagnostic Assessments. In: Xiangen Hu et al. (eds.) Proceedings of the 10th International Conference on Educational Data Mining. EDM 2017
- Kingma and Welling. Auto-Encoding Variational Bayes. International Conference on Learning Representations. ICLR, 2014
- Curi, Converse, G., M., Hajewsky, J. and Oliveira, S. Interpretable Variational Autoencoders for Cognitive Models. 2019 International Joint Conference on Neural Networks (IJCNN), 2019.
- Converse, G., Curi, M. and Oliveira, S. Autoencoders for Educational Assessment. 20th Annual Conference on Artifical Intelligence in Education (AIED), 2019.

Artificial neural networks (ANN)

input
layer

$\mathrm{j}=1, \ldots, \mathrm{n}$ (subject); $w_{i h}, w_{h o}^{*}$ (weight/parameter); b_{h}, b_{o}^{*} (bias/intercept)

$$
\begin{gathered}
\text { net }_{j h}=\sum_{i=1}^{p} w_{i h} x_{j i}+b_{h} \\
f\left(\text { net }_{j h}\right)=\frac{1}{1+e^{-n e t_{j h}}}=z_{j h} \\
n e t_{j o}^{*}=\sum_{h=1}^{k} w_{h o}^{*} z_{j h}+b_{o}^{*} \\
\hat{Y}_{j o}=\hat{P}\left(Y_{j o}=1\right)=f^{*}\left(n e t_{j o}^{*}\right)=\frac{1}{1+e^{-n e t_{j o}^{*}}}
\end{gathered}
$$

Activation function $\left(f(\cdot), f^{*}(\cdot)\right)$: sigmoid or logistic function, hyperbolic tangent, relu, etc
Loss function $(L(\boldsymbol{y}, \hat{\boldsymbol{y}}))$: MSE, cross-entropy, etc

