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Abstract: This article considers a new approach, an alternative class of correlated binomial regres-
sion models, to analyze data set involving correlated binary variables. The proposed methodology is
illustrated considering a real data set containing information about a Brazilian health plan opera-
tor. The main interest of the analysis is to fit a regression model that can be used to determine the
probability of high-cost health service occurrence in a company. A decision about the renewal or not
of the health plan can be taken based on the magnitude of this probability. The data set presents a
portfolio of companies (clusters) and the occurrence or not of high-cost health service for the employee
(individual) inside the company. The available data in the ith company, i = 1, 2, . . . , 160, with ni em-
ployees, consists of Wi1,Wi2, . . . ,Wini

, each one assuming value 0 or 1, depending on the status of the
employee. The response variable for the ith company, Yi =

∑ni
j=1

Wij , assumes values at {0, 1, . . . , ni}.
A dependence structure between the Bernoulli variables inside the company can be explained by the
fact that the employees are exposed to the same environment. Some cluster covariates are available in
the data set. The probability of high-cost health service occurrence is determined using the alternative
class of correlated binomial regression models which is based on a generalized binomial distribution.

Keywords and phrases: Generalized binomial distribution, overdispersed regression models, resid-
uals, local influence.

1. Introduction

In a real practical situation, it is common to observe data sets where the response variable represents
the sum of dependent Bernoulli random variables. McCullagh & Nelder (1989) argue that, unless there are
good reasons for relying on the binomial assumption, it seems to be wise to be cautious and to assume that
overdispersion is present in these types of data sets. The overdispersion phenomenon occurs when a higher
variability than that assigned to the usual binomial model is observed in the data and can be attributed to
several causes such as correlation between the binary responses, the absence of relevant explanatory variables,
etc.

As a motivational example of overdispersed binomial data modeling, we consider a data set from a Brazilian
health plan operator. The data comprise a portfolio of companies (clusters) for which the occurrence or not
of high-cost health services - such as oncological surgery, prosthesis, chemotherapy and hemodialysis - is/are
observed for each employee. The available data for the ith company with ni employees, i = 1, 2, . . . , 160,
consists of Wi1,Wi2, . . . ,Wini

, each one assuming value 0 or 1, depending on the status of the employee
(0 = not occurrence; 1 = occurrence). Thus, the response variable for the ith company, Yi =

∑ni

j=1 Wij ,
assumes values in {0, 1, . . . , ni} according to the number of employees who have used the high-cost health
services. For this particular data set, a dependence structure between the Bernoulli variables inside the
company could be assumed and explained by the fact it is reasonable to consider that employees within the
same company are exposed to the same environment conditions. This data set also features the following
covariates: average number of medical appointments per employee; average cost of medical test; occurrence
of surgical procedure; number of therapies; number of emergency procedures; number of days between the
beginning of the plan period and the first high-cost health service occurrence per each employee and specific
information about the companies (size, number of employees, business activity). From the point of view of the
operator, the main interest while analyzing this data set would be to fit a regression model able to precisely
determine the probability of a high-cost health service occurrence in a company, which would be taken into
consideration at the time of renewing or not of the health plan. Since we have assumed correlations between
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the employees inside the company, the probability of a high-cost health service occurrence could be found
using overdispersed binomial regression models for independent data.

The modified logistic-linear model (Williams, 1982) could be fitted if employees within the same cluster
had a correlation parameter common to all companies. The beta-binomial regression model (Altham, 1978;
Prentice, 1986; Efron, 1986; Lindsey, 1995; Lindsey & Altham, 1998), the multiplicative binomial regression
model (Lindsey & Altham, 1998), and the double-binomial regression model belonging to Efron’s double-
exponential family (Efron, 1986) could also be considered for the health plan data set. For theses models, both
the probability of a high-cost health service occurrence and the correlation parameter could be found using
two separate regression equations. The multivariate probit regression model (Ochi & Prentice, 1984), which
also allows pairwise correlation between binary variates would also be a possibility to model the discussed
data. Moreover, if each binary observation had its own covariates, we could use the regression methods
proposed by Prentice (1988). Another useful class of distributions proposed for binomial data modeling in
the presence of overdispersion is the class of finite mixed models, particularly correlated binomial regression
models, which also can be interpreted as inflated models (see Lambert, 1992). A Bayesian approach for
correlated binomial regression models is presented in Pires & Diniz (2012).

Correlated binomial regression models are based on the generalized binomial distribution, proposed by
Luceño (1995) and Luceño & De Ceballos (1995) and discussed in detail in Diniz et al. (2010), which rep-
resents a form to write the distribution of sums of dependent Bernoulli random variables equicorrelated
using the mixture of the distributions of two variables. In this paper, we develop an alternative class
of correlated binomial regression models by jointly modeling the probability of success using four differ-
ent link functions, the logit, the complementary log-log, the log-log and the probit links, and the depen-
dency between individuals within the same cluster using correlated functions (Jennrich & Schluchter, 1986;
Zimmerman & Harville, 1991; Cressie, 1993; Russell, 1996; Sherman, 2011), while taking into account the
available covariates. The maximum likelihood estimator are obtained by direct maximization of the likeli-
hood function.

As with any modeling procedure, we need to make some initial assumptions in order to fit the model to
the data. Section 3 presents some underlying assumptions made when constructing the correlated binomial
regression model. Residuals based on the predicted values and deviance residuals are defined to check the
assumptions in the model. A sensitivity study to detect outliers or influential cases that can change the
inferential results is performed. A case-deletion influence diagnostic (Cook & Weisberg, 1982) based on the
generalized Cook’s distance and the likelihood distance (Zhu et al., 2001) are considered to evaluate the sensi-
tivity of the observations when estimating the parameters. Two predictive model selection criteria, the Akaike
information criteria (AIC) (Akaike, 1974) and the Bayesian information criteria (BIC) (Schwarz, 1978), are
used.

2. Correlated binomial regression model

Assume Y1, Y2, . . . , Ym are independent random variables such that each Yi follows a correlated bi-
nomial distribution, denoted by Yi ∼ CB(ni, pi, ρi), i = 1, . . . ,m. The correlated binomial distribution
(Luceño, 1995; Luceño & De Ceballos, 1995) is a form to write the distribution of sums of equicorrelated
Bernoulli random variables. It is given by the mixture of the distributions of two variables. One of them fol-
lows a binomial distribution, B(ni, pi), with mixing probability (1−ρi), and the other one follows a modified
Bernoulli distribution, MBern(pi), taking values 0 or ni (Fu & Sproule, 1995), rather than the conventional
values 0 or 1, with mixing probability ρi. Taking this into account, Yi, the number of successes in ni trials of
Bernoulli, i = 1, 2, . . . ,m, is the sum of equicorrelated binary responses with a probability of success constant
pi and a common correlation coefficient equal to ρi. Thus, Yi =

∑ni

j=1 Wij , where Wij = 0, 1, j = 1, . . . , ni,
is a binary variable with E(Wij) = pi, Var(Wis) = Var(Wit) = pi(1− pi) and Corr(Wis,Wit) = ρi, for all s
and t, s 6= t. The probability distribution of Yi, given ni, pi and ρi is then given by
P (Yi = yi|ni, pi, ρi) =(ni

yi

)

pyi

i (1− pi)
ni−yi(1− ρi)IA1i

(yi) + p
yi
ni

i (1− pi)
ni−yi

ni ρiIA2i
(yi), (2.1)

where A1i = {0, 1, . . . , ni}, A2i = {0, ni}, ni ∈ N−{0}, 0 < pi < 1 and 0 ≤ ρi ≤ 1. The mean and variance of
Yi are nipi and pi(1−pi){ni+ρi ni(ni−1)}, respectively. Note that the binomial model is a particular case of
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the CB(ni, pi, ρi) model, when ρi = 0. This distribution can be interpreted as a zero-ni inflated distribution
(see Lambert, 1992). The values zero and ni, which occur with greater frequency than expected by binomial
distribution, are captured by the modified Bernoulli distribution. The occurrence of various values zero and
ni can be explained by the positive correlation between the individuals inside the cluster.

2.1. Inference

Let y = (y1, y2, . . . , ym)⊤ be a set of observed values of response variables Y = (Y1, Y2, . . . , Ym) and
n = (n1, n2, . . . , nm)⊤, a vector with the cluster sizes. Then, the likelihood function of p = (p1, p2, . . . ,

pm)⊤, a vector with the success probabilities for each cluster, and ρ = (ρ1, ρ2, . . . , ρm)
⊤
, a vector with the

correlation between any two individuals within the cluster, may be written as

L(p,ρ;m,n,y) =
m
∏

i=1

{

ai

(

(1− pi)
ni(1− ρi) + (1− pi)ρi

)

+ bi

(

pni

i (1− ρi) + piρi

)

+(1− ai − bi)

(

(

ni

yi

)

pyi

i (1− pi)
ni−yi(1− ρi)

)}

, (2.2)

where ai = 1 if yi = 0, and ai = 0 otherwise; bi = 1 if yi = ni, and bi = 0 otherwise. Note that ai and bi are
known values, with i = 1, ...,m.

To define a correlated binomial regression model, the success probability, pi, and the correlation parameter,
ρi, are jointly modeled using the sets of covariates available for the clusters and for the individuals inside
the clusters. The parameters pi are modeled using the link functions Qi, specified in Table 1, with ηi =
∑k

r=0 βrxir. The coefficients β0, β1, . . . , βk are unknown regression parameters to be estimated; xi0 = 1, for
all i; and x1i, x2i, . . . , xik represent the values of the k covariates for the ith cluster.

Table 1

Link functions used to model pi.

Link function Qi

Logito exp {ηir} / [1 + exp {ηir}]
Comp. log-log 1− exp {− exp {ηir}}
Log-log exp {− exp {−ηir}}
Probito Φ (ηir)

Φ (·) is the cumulative distribution function for the normal distributions.

The correlated structure is modeled considering a specific function of the available covariates that are able
to relate the dependence between individuals inside the cluster. The correlated structure can be written, in
general, as

Ri = h(v(ri), γ), (2.3)

where h(v(ri), γ), an appropriate nonlinear, monotonic and differentiable function, is the correlation between
any two individuals within the ith cluster; v(ri) represents a function of the individual covariates values,
assuming positive values; ri = (ri11, . . . , ri1ni

, ri21, . . . , ri2ni
, riq1, . . . , riqni

)⊤, with rilj representing the value
of the lth covariate for jth individual inside the ith cluster, i = 1, . . . ,m, l = 1, . . . , q and j = 1, . . . , ni; γ is
the parameter which determines the rate of decay of correlation as a function of v(ri) (Sherman, 2011). Using
spatial ideas of correlation structures, the possible choices of the function v(ri) can be made considering, for
instance, continuous functions of some distance between position vectors or between other available vectors
which allow us to characterize the relationship among the individuals within the cluster (Sherman, 2011).
Therefore, candidates for v(ri), using only the covariates ri1 and ri2, could be the Euclidean distance metric,

defined as
√

∑

l=1,2

∑

s

∑

s<t(rils − rilt)2, the Manhattan distance, defined as
∑

l=1,2

∑

s

∑

s<t |rils − rilt|,

maximum distance, defined as maxs,t |ri1s−ri1t|, minimum distance as mins,t |ri2s−ri2t|, with s, t = 1, . . . , ni.
Subsequently, the likelihood can be rewritten as a function of the regression coefficients β0, β1, . . . , βk, asso-

ciated with the covariates, and of the coefficient γ, associated with the correlated structures. Let the observed
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data set beD = (m,n,y,x, r)⊤, where n = (n1, n2, . . . , nm)⊤, y = (y1, y2, . . . , ym)⊤, x = (x1,x2, . . . ,xm)⊤,
xi = (xi0, xi1, xi2, . . . , xik)

⊤, and r = (r11, . . . , r1q, r21, . . . , rmq)
⊤. Using a link function Qi and a correlated

structure Ri, the likelihood function (2.2) can be expressed as a function for θ = (β0, β1, . . . , βk, γ)
⊤. Thus,

L(θ;D) =

m
∏

i=1

{

ai

(

(1−Qi)
ni(1−Ri) + (1−Qi)Ri

)

+ bi

(

Qni

i (1−Ri) +QiRi

)

+(1− ai − bi)

(

(

ni

yi

)

Qyi

i (1−Qi)
ni−yi(1−Ri)

)}

, (2.4)

where ai = 1 if yi = 0, and ai = 0 otherwise; bi = 1 if yi = ni, and bi = 0 otherwise, with i = 1, ...,m. When
Ri assumes value zero, we need to consider Ri = ζ, where ζ is a fixed value very close to zero.

The maximum likelihood estimators can be obtained by direct maximization of the log-likelihood function
(ℓ(θ;D) = logL(θ;D)) using for instance the BFGS algorithm (Nocedal & Wright (2006)). The advantage
of this procedure is that it runs easily from a statistical packages such R (Team (2008)). The code in R used
in this procedure is available by request from the first author or on the website
http://www.ufscar.br/~des/docente/carlos/Dados/MRBC_EMV.txt.

3. Diagnostics

Two different types of residuals, the standardized residual and the deviance residual, and two global
influence measures, the generalized Cook’s distance and the likelihood distance are considered to identify
the presence of outliers and/or influential observations. To check the underlying model assumption in which
the response variables follow a correlated binomial distribution BC(ni, pi, ρi), with a positive correlation
between the Bernoulli variables in the cluster, ρi > 0, the significance of the correlated structure parameter
γ is observed using confidence intervals obtained in the inferential process. If γ = 0 or γ = 1, the usual
binomial regression model can be considered in the analysis.

3.0.1. Standardized residuals

The standardized residual for the correlated binomial regression model is defined as

ri =
yi − nip̂i

√

p̂i(1− p̂i){ni + ρ̂ini(ni − 1)}
, i = 1, . . . ,m, (3.1)

where p̂i = Q̂i, ρ̂i = R̂i and γ̂ and β̂ are, respectively, the maximum likelihood estimates of the parameters
γ and β.

3.1. Deviance residuals

The deviance residual for the correlated binomial regression model is defined as

rdi = signal(yi − nip̂i)

√

2ℓ(yi;D, γ̂)− 2ℓ(β̂;D, γ̂), (3.2)

where p̂i, ρ̂i, γ̂ and β̂ are as in the previous case, ℓ(yi;D, γ̂) is the saturated log-likelihood function, with
p̂i = yi/ni and the correlated structure parameter γ substituted by the maximum likelihood estimate γ̂ and

ℓ(β̂;D, γ̂) is the log-likelihood function evaluated at the maximum likelihood estimates.

3.2. Global influences

Two metrics can be used for assessing the influence on a correlated binomial regression model: the gener-
alized Cook’s distance and the likelihood distance (Zhu et al., 2001). These methodologies are effective when
there is only one outlier (She & Owen, 2011). She and Owen She & Owen (2011) suggest an alternative
method for the presence of multiple outliers. However, this tool was not adapted to our model yet.
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3.2.1. Generalized Cook distance

The generalized Cook distance (Zhu et al., 2001) can be used to quantify the impact of the ith observation

on the maximum likelihood estimator of θ, θ̂. It is given by

Ci =
(

θ̂(−i) − θ̂
)⊤

J(θ̂)
(

θ̂(−i) − θ̂
)

,

where θ̂(−i) is the maximum likelihood estimator of θ based on L(θ;D) with the ith observation (ni, yi,xi, ri)
⊤

deleted and J(θ̂) is the Fisher observed information matrix. When the number of clusters, m, is large,

Cook & Weisberg (1982) suggest the following approximation for θ̂(−i):

θ̂(−i) = θ̂ + J(θ̂)−1U(θ̂(−i)), (3.3)

where

U(θ̂(−i)) =
∂ℓ(θ;D(−i))

∂θ(−i)

∣

∣

∣

∣

∣

θ(−i)=θ̂(−i)

.

The vector of scores, U(θ(−i)), with the ith observation deleted, has a dimension (k+ 2). Using the approx-
imation present in (3.3), the generalized Cook distance is rewritten as

Ci = U(θ̂(−i))
⊤J(θ̂)U(θ̂(−i)).

3.2.2. Likelihood distance

The likelihood distance (Zhu et al., 2001) can also be used to measure the difference between θ̂ and θ̂(−i).
This natural measure is given by:

LDi = 2
{

ℓ(θ̂;D)− ℓ(θ̂(−i);D)
}

, (3.4)

where ℓ(θ̂;D) and ℓ(θ̂(−i);D) are the log-likelihood functions evaluated at the usual maximum likelihood

estimate, θ̂, and at the maximum likelihood estimate with the ith observation (ni, yi,xi, ri)
⊤ deleted, θ̂(−i),

respectively. Note that, as ℓ(θ;D), for fixed D, is maximized for θ = θ̂, for whatever any other θ 6= θ̂, ℓ(θ;D)

will be less than ℓ(θ̂;D), so the expression in (3.4) is always positive.
The ith observation is considered as influential if the value of the generalized Cook distance or the

likelihood distance is large. This value can be compared to the critical points of the χ2
k+2 distribution.

4. Beta-binomial regression models

In order to compare the results of the fitted model proposed in this work with those given by other methods,
an analysis is considered for the beta-binomial regression models (Prentice, 1986; Lindsey & Altham, 1998).

Assuming p arises from a conjugate beta distribution, Beta(α1, α2), α1 > 0 and α2 > 0, and the param-
eterization p = α1/(α1 + α2) and ρ = 1/(α1 + α2 + 1), such that α1 = p/ζ and α2 = (1 − p)/ζ, where
ζ = ρ/(1− ρ). The beta-binomial distribution can be written as

P (Y = y|n, p, ζ) =

(

n

y

) y−1
∏

j=0

(p+ ζj)

n−y−1
∏

j=0

((1− p) + ζj)





n−1
∏

j=0

(1 + ζj)





−1

, (4.1)

where
∏x

j=0 cj = 0, for any x < 0, y = 0, 1, . . . , n, n ∈ N − {0}, 0 < p < 1 and −1 ≤ ρ ≤ 1. The mean and
variance of this model are E(Y ) = np and Var(Y ) = np(1− p)(1 + (n− 1)ρ) (Prentice, 1986).

Let y1, y2, . . . , ym be a set of observed values of Y1, Y2, . . . , Ym. The log-likelihood function is given by

5



ℓ
BB

(p, ζ;m,n,y) =

m
∑

i=1

{

log

(

ni

yi

)

+

yi−1
∑

j=0

log (pi + ζij)

+

ni−yi−1
∑

j=0

log ((1− pi) + ζij)−

ni−1
∑

j=0

log (1 + ζij)

}

, (4.2)

where pi = Qi and ρi = Ri.
The maximum likelihood estimators are obtained by direct maximization of the log-likelihood function

(4.2). The observed Fisher information matrix is similar to that presents in Prentice (1986).
In the next section, the results of the fitted correlated binomial regression model, using the complementary

log-log link function and continuous AR correlated structure, are compared with these given by the fitted
Prentice models.

5. Health plan data set

We consider a health plan operator problem in Brazil for which the data are available from
http://www.ufscar.br/~des/docente/carlos/Dados/Dados2.txt (information about health plans in Brazil
can be found at http://www.ans.gov.br/). The health plan operator needs to determine the probability
of high-cost health service occurrence in a company, which would be taken into consideration at the time of
renewing or not of the health plan. This problem was discussed in the introduction section as our motivating
example of overdispersed binomial data modeling. Two covariates are considered in the analysis: the average
number of medical appointments per employee, xi1, and the average cost of a medical test, xi2. The covariate
number of days between the beginning of the plan period and the first high-cost health service occurrence
per each employee, rij , is used to account for the dependence between the Bernoulli variables inside the
company. In fact, we consider the variable mins,t |ris − rit|, the minimum of days between the employee s
and t, which assumes values between zero, where both employees use the service on the same day, and 365,
where there is no use of the plan by the employees. This variable is standardized in the interval [0,1] by the
transformation mins,t |ris−rit| = mins,t |ris−rit|/365. It is intuitive to assume that the greater the difference
between the times of using the plan, the lower the relation between the use of the service. For this reason,

the continuous AR correlated structure, given by Ri = γ
mins,t |ris−rit|

365 , with i = 1, . . . ,m and s, t = 1, . . . , ni,
is considered in the analysis. A correlated binomial regression model is fitted to the data for each of the four
link functions. The results obtained by the model selection method AIC and BIC are shown in Table 2. As
can be observed by these results, the model with the complementary log-log link function is identified as the
best choice.

Table 2

AIC and BIC values for correlated binomial regression fitted models with different link functions.

Criterion Logit Complementary log-log Log-log Probit
AIC 397.861 397.811 398.390 398.143
BIC 410.161 410.112 410.691 410.444

The maximum likelihood estimators of the parameters for the fitted model with complementary log-log
link function are shown in Table 3. Note that the confidence intervals of the correlated structure parameter,
γ, does not contain zero, corroborating with the fact that a correlated binomial regression model should be
used in the analysis.

Table 3

The maximum likelihood estimators (MLE) and asymptotic confidence interval (ACI) of the parameters γ, β0, β1 and β2, for
the business health plan data set.

Parameter γ β0 β1 β2

MLE 0.223 -3.833 0.206 0.322
95% ACI (0.121 , 0.325) (-4.411 , -3.254) (0.032 , 0.381) (0.161 , 0.484)
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The assumption of independence and the presence of outliers can be observed by examining the residual
plotted in time order, if the order is available. The standardized residuals, based on the predicted values of Yi,
and the deviance residuals, based on the log-likelihood function, are presented in Figures 1a and 1b. Figure
1b indicates cases 36, 43 and 85 as possible outliers. The model specification and, again, the presence of
outliers are observed by examining the residuals plotted against predicted values. Both plots indicate a good
specification of the model. The greatest values of the generalized Cook distance, 1.147, and the likelihood
distance, 0.557, are given by case 85.
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Figure 1. (a) Standardized residuals versus predicted values; (b) Deviance residual versus predicted values.

To reinforce this need of using the proposed model in this data set, we also fitted four other models, the
usual binomial regression model and negative binomial regression model fitted using the complementary log-
log link function, the usual Poisson regression model fitted using the log link function, and the beta-binomial
regression model fitted using the complementary log-log link function and the continuous AR correlated
structure. The binomial regression fitted model had an AIC value of 538.495 and BIC value of 547.720, the
poisson regression fitted model had an AIC value of 668.343 and BIC value of 677.569, the negative binomial
regression fitted model had an AIC value of 466.431 and BIC value of 478.731, the beta-binomial regression
fitted model had an AIC value of 440.545 and BIC value of 452.846, while the correlated binomial regression
fitted model had an AIC value of 397.811 and BIC value of 410.112. Besides the smallest AIC and BIC in
its favor, the analysis described in this section indicates that the alternative model, the correlated binomial
regression model fitted using the complementary log-log link function and the continuous AR correlated
structure, provides a very good fit for this data set.

The decision regarding the renewal of contracts, based on the analysis conducted in this work (considering
the complete data set), establishes that the probability of high-cost health service in the ith company for this
real data set is given by p̂i = 1 − exp {− exp {−3.833 + 0.206xi1 + 0.322xi2}}, with xi1: average number of
medical appointments per employee and xi2: average cost of medical tests. The correlation between any two
individuals within the ith company for this real data set is given by ρ̂i = 0.223v(ri), with v(ri) the variable
the minimum of days between the employees / 365.

6. Conclusions

A usual methodology to model a data set, whose response variable is the frequency of events, is the
binomial regression model. An important assumption in the setting of the binomial regression model is the
independence among the Bernoulli trials. For situations when this independence is not feasible, we propose a
correlated binomial regression model. This regression structure, besides modeling the probability of success of
an event of interest in a particular cluster, allows us to insert a correlated structure to model the dependence
between the Bernoulli trials within the clusters. In the present article, a correlated binomial regression model
is proposed to model the probability of high-cost health service used in a real data set. The developed model
can make the analysis more realistic in the sense that it assumes that the employees inside the company are
not necessarily independent.
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