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A quantile parametric regression model for bounded response variables

with an application in the analysis of attitudes scale

Abstract

Bounded response variables are common in several applications where the responses

are obtained through surveys or tests and in the particular case of score of attitudes,

obtained using Likert scales. The usual normal regression model to explain this type of

response ignores this fact and consequently new regression models were proposed recently

to model the relationship among one or more covariates and the conditional mean of a re-

sponse variable given the covariates considering the Beta distribution or mixture of them.

However, when we are interested in know how covariates are influent for different levels of

the score of attitudes, that is, how regression coefficients of a given covariate change for

different quantiles of an attitude quantil, regression models should be considered. A new

quantile parametric regression model for bounded response variables (and proportions as a

particular case) is presented by considering the distribution introduced by Kumaraswamy

(1980). A Bayesian approach is adopted for inference using Markov Chain Monte Carlo

(MCMC) methods. Model comparison criteria and model assessment are also discussed.

The method can be easily programmed and then easily used for data modeling. Further-

more, an application with a data set on attitudes of teachers toward Statistics is given.

Specifically, we show that the quantile parametric regression model proposed here is an

alternative modeling for bounded response variables. In our proposal, the effects of the

covariates on the quantiles of the response variable can be directly assessed.

Keywords: proportions ,rates, Kumaraswamy distribution, Bayesian inference, link

function, MCMC methods

2



1 Introduction

Bounded response variables are common in several applications where the responses are ob-

tained through surveys or tests. This is frequent in Economics and Psychology. A particular

case of this situation is the scale using the Likert construction, which is frequently used in the

measurement of attitudes. For example, Estrada et al. (2010) studied the attitudes toward

Statistics of teachers of primary education considering a Lickert scale of attitudes that consists

of 25 items comprising five points ranging from “strongly disagree” (level 1) to “strongly agree”

(level 5). The responses of a subject are added together to form a score with values in the set

{5, 6, . . . , 125}.

Traditional analysis to explore the relationship between attitude and covariates can be done

using the normal regression model with the score as the response variable. However, this

analysis ignores the fact that the score is a limited variable. That is, a response variable Y

takes values in the [c, d] interval, c < d, where c is the minimum value of Y and d is the

maximum value of Y , c > −∞ and d < ∞. Then, the usual practice when normal regression

models are considered in order to explain this kind of response variable is to ignore this fact and

assume that the response variable takes values in R or R+. However, it is easy to see that the

transformed variable (Y − d)/(d− c) takes values in the in the [0, 1] interval. Hence, regression

models for bounded response variables in the [0, 1] interval turn out to be more convenient.

Regression models for response variables in the unity interval, including regression models for

percentages, proportions, and fractions or rates, have been introduced recently in the literature.

We mention the beta regression model introduced by Kieschnick & McCullough (2003) and

Ferrari & Cribari-Neto (2004) and the beta-rectangular regression model proposed by Bayes

et al. (2012).

Some examples of these situations can be given, such as the percentage of time devoted to an
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activity during a certain period of time, the fraction of income spent on food, the unemployment

rate, the poverty rate, the score achieved in a test, the Gini index, the fraction of “good”

cholesterol (HDL/total cholesterol), the proportion of sand in the soil, and the fraction of

surface covered by vegetation.

In the beta regression model, the regression parameters are interpretable in terms of the

mean response, and in many aspects are similar to generalized linear models. Estimation can

be performed by maximum likelihood (Ferrari & Cribari-Neto, 2004) or by Bayesian methods

(Branscum et al., 2007). The beta regression model is sufficiently documented by several

publications such as Espinheira et al. (2008a), Espinheira et al. (2008b), Ferrari et al. (2011),

and Cribari-Neto & Zeileis (2010) and several applications as, for example, Kelly et al. (2007)

and Wallis et al. (2009).

In addition, the beta rectangular model proposed by Bayes et al. (2012) is more robust

than the beta regression model (Ferrari & Cribari-Neto, 2004). This new model includes the

beta regression model and the variable dispersion beta regression model (Ferrari et al., 2011)

as particular cases. Another extension considering mixture of beta distributions is presented in

Smithson et al. (2011).

In the above cited literature the authors consider only the relationship between one or more

covariates and the conditional mean of a response variable given the covariates. However, in

some applications the quantiles of the response variable are of central interest. For example, we

can be interested in know how covariates are influent for different levels of score of attitudes,

that is, how regression coefficients of a given covariate change for different quantiles of attitude.

Thus, we can be interested in quantile regression models.

Quantile regression, introduced by Koenker & Bassett (1978), is particularly useful when

the rate of change in the conditional quantile, expressed by the regression coefficients, depends

on the quantile and the main advantage is its flexibility for modeling data with heterogeneous
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conditional distributions. Data of this type occur in many fields, including Econometrics,

Survival Analysis, and Ecology (see, for example, Koenker & Hallock, 2001) but is inusual in

Education and Psychology. In general, quantile regression models are commom for response

variables taking values in R or R+ but to our knowledge, there is no quantile regression model

for variables with bounded response.

Thus, a convenient quantile parametric regression model for response variables in the unity

interval is proposed in this paper, which can be easily extended to bounded response variables.

We consider that the model proposed here for quantile regression models can be useful to

model the relationship between the covariates and the conditional quantiles of the response

variable given the covariates. Quantile regression also provides a more complete picture of the

conditional distribution of the response variable given the covariates. Consider, for example, a

model for the quantiles of a socioeconomic level or the achievement in an educational test. The

interest might rest on the upper quantiles.

From a Bayesian perspective, Yu & Moyeed (2001) proposed to assume an asymmetric

Laplace distribution (ALD) in a parametric quantile regression model for an unbounded re-

sponse variable. Kozumi & Kobayashi (2011) provided an useful stochastic representation for

the ALD that facilitates the implementation of a Gibbs sampling scheme for this model. This

approach has been extended to longitudinal data by Geraci & Bottai (2007). Our proposal is

similar to Yu & Moyeed (2001), but for a response variable in the unit interval and using as

parametric model the Kuramaswamy distribution.

Since the cumulative distribution function (cdf) of the beta distribution does not have a

closed form, quantile regression models built upon this distribution poses some difficulties. In

contrast, the Kumaraswamy distribution (Kumaraswamy, 1980; Jones, 2009) is a family of

continuous probability distributions defined on the (0, 1) interval that is similar to the beta

distribution, but much simpler due to the simple closed form of both its probability density
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function (pdf) and cdf. This distribution was originally proposed by P. Kumaraswamy for

variables that are bounded below and above.

The purpose of this paper is to show the advantages of using a parametric quantile regression

model for proportions considering the Kumarawasmy distribution proposed here and how this

model can be used for the study of attitudes. Without loss of generality, this model is equally

valid for all bounded response variables.

The paper is organized as follows. In Section 2 we present a short account of the Ku-

maraswamy distribution and a new parametrization is introduced. Our regression model is

formulated in Section 3. A Bayesian approach to this model is developed in Section 4 including

model assesment and model comparison criteria. Section 5 presents an application, which is

developed to show the usefulness of our regression model. Final comments are presented in

Section 6.

2 The Kumaraswamy distribution

A random variable Y follows a Kumaraswamy distribution if its pdf is given by

f(y|α, β) = αβyα−1(1− yα)β−1, 0 < y < 1, α, β > 0. (1)

Hence, the mean and variance are expressed by

E(Y |α, β) = βB

(
1 +

1

α
, β

)
and V ar(Y |α, β) = βB

(
1 +

2

α

)
− β2B2

(
1 +

1

α

)
, (2)

where B(·, ·) denotes the beta function.

As pointed out by Mitnik & Baek (2013), the expressions for E(Y ) and V ar(Y ) make a

mean-variance based reparametrization unfeasible. However, we can find a simple expression
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for the quantile function, given by

κ(q) = F−1(q) = {1− (1− q)
1
β }

1
α , 0 < q < 1. (3)

As a particular case the median is κ(0.5) = (1− 0.5
1
β )

1
α .

For a quantile regression analysis, we consider a reparametrization of the Kumaraswamy

distribution in terms of the q-quantile and the shape parameter following the ideas presented

in Mitnik & Baek (2013). In order to obtain a more appropriate regression structure for the

Kumaraswamy distribution, we take

κ = {1− (1− q)
1
β }

1
α and φ = − log

(
1− (1− q)

1
β

)
(4)

as a new parametrization. In this case, q is assumed known and the parameter space of (κ, φ)T

is given by (0, 1)× (0,∞).

Under this parametrization, the pdf and the cdf of the Kumaraswamy distribution turn out

to be

f(y|κ, φ) = − log(1− q)φ
log (1− e−φ) log(κ)

y−
φ

log(κ)
−1
{

1− y−
φ

log(κ)

} log(1−q)
log(1−e−φ)

−1
(5)

and

F (y|κ, φ) = 1−
{

1− y−
φ

log(κ)

} log(1−q)
log(1−e−φ) . (6)

We consider the notation Y ∼ K(κ, φ, q) with quantile parameter κ ∈ (0, 1), shape parameter

φ > 0, and 0 < q < 1 is assumed known.

Figure 1 depicts the pdf in (5) for different values of κ and φ. We pick the first decile,

the median, and the last decile. When κ is fixed, we note that φ is a parameter that controls

the precision and the kurtosis of the distribution. For the largest values of φ we observe less

dispersion and high values of kurtosis. In general, we interpret φ as a shape parameter. On the
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other hand, when φ is fixed we note that κ acts as a parameter that controls the location and

the skewness of the distribution, so that for larger values of φ we observe that the mode moves

to the right and the distribution has negative skewness. In general, since κ is the q-quantile

of Y , we interpret that this parameter is a location parameter in the range of values of the

variable being modeled.

3 The Kuramaswamy quantile regression model

Let Y = (Y1, . . . , Yn)T be a vector of observed responses that take values in the (0, 1)n hyper-

cube. The Kuramaswamy quantile regression model is given by

Yi
indep.∼ K(κi, φ, q) and g−1q (κi) = ηi = xTi β, (7)

for i = 1, . . . , n, where β = (β1, . . . , βk)
T is a vector of regression coefficients associated with

thee location and xi = (xi1, . . . , xik)
T is a vector of k covariates. Here, φ is considered a

parameter to be estimated and q is assumed known. Moreover, the quantile function κ = κ(q)

is identifiable when q is specified and g−1q (·) is a strictly monotone and twice differentiable

function that maps (0, 1) into R.

In general, gq(·) can be any cdf corresponding to a continuous distribution where the inverse

function is called the link function relating the quantile κi to the covariates xi. Some examples

of link function are the logit, probit, and complementary log-log functions. In this paper we

adopt the logit link, but of course other link functions might be explored.

Under the parameterization in (5), the likelihood function can be written as

L(θ|Y ) =
n∏
i=1

f(yi|κi, φ) =
n∏
i=1

− log(1− q)φ
log (1− e−φ) log(κi)

y
− φ

log(κi)
−1

i

{
1− y

− φ
log(κi)

i

} log(1−q)
log(1−e−φ)

−1

, (8)
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Figure 1: Kumaraswamy pdf for different values of κ and φ. Left panel: κ = 0.5 and different
values of φ: 1 (solid line), 5 (dashed line), and 10 (dotted line). Right panel: φ = 5 and different
values of κ: 0.3 (solid line), 0.5 (dashed line), and 0.7 (dotted line).
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where θ = (βT , φ)T and κi is defined in (7). Therefore, the log-likelihood function, denoted by

`(θ|Y ), is given by

`(θ|Y ) =
n∑
i=1

`i(θ|Y ) =
n∑
i=1

[
log(− log(1− q))− log

(
− log

(
1− e−φ

))
− log(− log(κi))

+ log(φ)−
{

φ

log(κi)
+ 1

}
log(yi) +

{
log(1− q)

log (1− e−φ}
− 1

}
log

(
1− y

− φ
log(κi)

i

)]
.

(9)

The first and second derivatives of `(θ|Y ) with respect to θ are presented in Appendix A.

4 Bayesian inference

With independent data, the likelihood function for the Kumaraswamy quantile regression model

is given by (8) and (7). In this way, the posterior distribution of θ, denoted by p(θ|Y ), is

obtained as

p(θ|Y ) ∝ L(θ|Y )p(θ), (10)

where p(θ) stands for the prior distribution of θ. To complete the Bayesian specification of the

model, we assume that the elements of the parameter vector are a priori independent, that is,

p(θ) = p(φ)p(β) = p(φ)
k∏
j=1

p(βj). (11)

We adopt βj ∼ N(0, σ2
0j) and log(φ) ∼ N(0, σ2

1), where σ2
0j, j = 1, . . . , k, and σ2

1 are set to ensure

vague prior knowledge. After plugging the likelihood function (8) and the prior distribution

into (10), we get

p(θ|Y ) ∝
n∏
i=1

− log(1− q)φ
log (1− e−φ) log(κi)

y
− φ

log(κi)
−1

i

{
1− y

− φ
log(κi)

i

} log(1−q)
log(1−e−φ)

−1

p(φ)
k∏
j=1

p(βj). (12)
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The posterior mean is taken as the point estimator.

Since the posterior distribution in (12) has an analytically intractable expression, we resort

to the Gibbs sampler (see, e.g., Chen et al., 2000) in order to sample from this posterior

distribution. The full conditional distributions of βj and φ, denoted by p(βj|·) and p(φ|·),

are easily obtained from (12). Furthermore, since these distributions neither have a known

form nor are log-concave, in each cycle of the Gibbs sampler we perform Metropolis steps. Let

`(βj|·) = log (p(βj|·)). Following Chen et al. (2000, Section 2.2), a proposal value β∗j ∼ N(β̂j, σ̂
2
j )

for βj is generated, where β̂j maximizes `(βj|·) and σ̂2
j is minus the inverse of d2`(βj|·)/dβ2

j

evaluated at βj = β̂j. The maximization of `(βj|·) can be carried out with the Nelder-Mead

algorithm implemented by O’Neill (1971). A move from βj to β∗j takes place with probability

min

(
π(β∗j |·)φ

(
(βj − β̂j)/σ̂j

)
π(βj|·)φ

(
(β∗j − β̂j)/σ̂j

) , 1) ,
where φ(·) denotes the standard normal pdf. Samples from the full conditional distribution

of φ are drawn in a similar fashion with d2`(φ|·)/dφ2. The second derivatives d2`(βj|·)/dβ2
j ,

j = 1, . . . , k, and d2`(φ|·)/dφ2 are showed in (A1) and (A2), respectively.

The MCMC computations were implemented using the FORTRAN language. The compu-

tational codes are available on request from the authors. We have also written BUGS codes

in WinBUGS (Lunn et al., 2000) (see the printout in Appendix B), which give a relatively

straightforward implementation of the proposed model.

The convergence of the chains was monitored by the Geweke’s statistic (Geweke, 1992)

and graphical inspection of the chains. The highest posterior density (HPD) intervals were

estimated following the steps described in Chen et al. (2000, Section 7.3.1). Once β is estimated,

consequently κ is estimated and considering that this is a location parameter in the range of

values of the variable being modeled, κi for a particular value q is an estimate of the variable
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of interest.

4.1 Model assessment

In this section a device for the assessment of model fitting is presented. Taking into account

the cdf in (6), it follows that F (Yi|κi, φ)
iid∼ Uniform(0, 1), where κi = 1/{1 + exp(−xTi β)},

i = 1, . . . , n. Therefore, under the postulated model in (7), Q(Y ,θ) = −
∑n

i=1 log
(
F (Yi|θ)

)
is

distributed as a Gamma(n, 1) random variable. The pivotal quantity Q(Y ,θ) is a key element

for model checking. If θ0 denotes the data generating value of θ and θpost is drawn from the

posterior distribution of θ given Y , Johnson (2007) proved that Q(Y ,θ0) and Q(Y ,θpost) have

the same distribution. As advocated by Johnson (2007), a useful tool for model assessment can

be based on graphical comparisons of the posterior distribution of this pivotal quantity to its

reference distribution. This graphical diagnostic may reveal model inadequacy.

4.2 Model comparison criteria

There are several criteria for comparing different models fitted to a given data set and for

selecting the one that best fits the data. Two of the often used criteria are based on the deviance

information criterion (DIC) (Spiegelhalter et al., 2002) and the conditional predictive ordinates

(CPO) (Gelfand et al., 1992). The DIC is built upon the deviance D(θ) = −2`(θ|Y ), with

`(θ|Y ) as in (9). From G samples θ1, . . . ,θG generated by the Gibbs sampler, the DIC is

computed as DIC = D(θ) + 2pD, where pD = D(θ) − D(θ) is termed the effective number

of parameters, with D(θ) =
∑G

g=1D(θg)/G and θ =
∑G

g=1 θg/G. Given a set of candidate

models, the model yielding the smallest value of the DIC is the one that best fits the data.

For each observation, CPOi can be approximated by ĈPOi = [{
∑G

g=1 1/L(θg|yi)}/G]−1, where

L(θ|yi) comes from (8). An omnibus measure of fit based on the ĈPOi’s is provided by the
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log-pseudomarginal likelihood (LPML) (Geisser & Eddy, 1979) with expression LPML =∑n
i=1 log(ĈPOi). The larger the value of LPML, the better the fit of the model.

5 Application

Estrada et al. (2010) studied the attitudes toward Statistics of 146 teachers of primary education

taking into account some characteristics of them as the country where the teachers live (Spain,

n = 66, baseline and Peru, P, n = 80), specialty (Sciences, n = 43, baseline, Social Sciences,

SS, n = 75, and Elementary School, ES, n = 28), and sex (female, n = 85, baseline and

male, M, n = 61). The scale of attitudes consists of 25 items comprising five points ranging

from “strongly disagree” (level 1) to “strongly agree” (level 5). The responses of a subject

are added together to form a score with values in the set S ∈ {5, 6, . . . , 125}. For this data

set, the Si, i = 1, 2, . . . 146 score ranges from 48 to 102, with mean and standard deviation

equal to 77.9 and 11.0, respectively. Traditional analyses to explore the relationship between

attitude and the above covariates can be done using the normal regression model with the

score as the response variable. Furthermore, a beta regression model can be fitted by taking

the transformed score y, given by Yi = (Si − 25)/(125− 25), as the response variable, ranging

from 0.23 to 0.77, with mean and standard deviation equal to 0.53 and 0.11, respectively.

We begin fitting the Bayesian normal and beta regression models. For the normal model

Si
indep.∼ N(xTi β, σ

2), i = 1, . . . , n, we put independent priors βk ∼ N(0, 104), j = 1, . . . , k,

and 1/σ2 ∼ Gamma(0.01, 0.01). For the beta model, yi
indep.∼ Beta(xTi β, σ

2), i = 1, . . . , n, we

put independent priors βk ∼ N(0, 104), j = 1, . . . , k, and 1/σ2 ∼ Gamma(0.01, 0.01). We ran

the BUGS code furnished by Branscum et al. (2007). In the Gibbs sampler, the first 5000

iterations were discarded. Then, we performed 25000 additional iterations with thinning equal

to 5, leading to 5000 samples for each parameter. Results from both analyses are showed in
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Table 1: Posterior results for the normal model and the beta regression model with logit link
for the mean and identity link for the precision (φ).

Full model Reduced model
Model Parameter Mean SD 95% HPD interval Mean SD 95% HPD interval

Normal Intercept 85.21 1.78 (81.78, 88.79) 83.94 1.17 (81.62, 86.20)
Specialty: SS -2.96 1.95 (-6.77, 0.85)
Specialty: ES -6.94 2.79 (-12.42, -1.44) -4.49 2.25 (-8.91, -0.10)
Country: P -8.46 1.92 (-12.27, -4.76) -9.39 1.78 (-12.9, -5.93)
Sex: M 0.39 1.69 (-2.95, 3.66)
σ2 90.60 11.00 (70.01, 112.42) 90.80 10.93 (70.39, 112.57)
DIC 1077.2 1076.4

Beta Intercept 0.41 0.07 (0.27, 0.56) 0.36 0.05 (0.26, 0.45)
Specialty: SS -0.12 0.08 (-0.28, 0.03)
Specialty: ES -0.28 0.11 (-0.50, -0.06) -0.18 0.09 (-0.34, -0.01)
Country: P -0.34 0.08 (-0.50, -0.19) -0.38 0.07 (-0.51, -0.24)
Sex: M 0.01 0.07 (-0.13, 0.14)
φ 26.37 3.08 (20.70, 32.73) 26.31 3.02 (20.37, 32.19)
DIC -267.2 -269.1

Table 1. The reduced models include only the significant coefficients at a 5% level. A coefficient

is significant when its 95% HPD interval does not contain 0. For these models, the baseline

category of specialty merges Sciences and Social Sciences.

In Table 1 we see that specialty and country are the significant covariates. Since the full

and reduced models yield similar values of DIC, for the sake of simplicity we select the reduced

model as our working model. From this model, we conclude that Elementary School teachers

and Peruvian teachers present significant lower attitudes toward Statistics in comparison with

the baseline categories (Sciences/Social Sciences teachers and Spanish teachers, respectively).

Next the Kumaraswamy quantile regression model was fitted to the 0.25, 0.5, and 0.75

quantiles of attitude. We ran the Gibbs sampler under the same conditions of the normal

and beta regression models. The hyperparameters in (11) were set at the same values of the

simulation study previously conducted (not shown) to evaluate the code used to implement the

proposed model. That is, the hyperparameters in (11) were set at σ2
01 = σ2

02 = σ2
1 = 104.
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Table 2: Posterior results for the Kumaraswamy quantile regression model.
Full model Reduced model

Quantile Parameter Mean SD 95% HPD interval Mean SD 95% HPD interval

0.25 Intercept 0.15 0.09 (-0.02, 0.32) 0.10 0.06 (-0.01, 0.20)
Specialty: SS -0.15 0.09 (-0.32, 0.03)
Specialty: ES -0.35 0.14 (-0.60, -0.08) -0.23 0.11 (-0.43, 0.01)
Country: P -0.33 0.09 (-0.50, -0.15) -0.38 0.08 (-0.54, -0.22)
Sex: M 0.04 0.08 (-0.11, 0.20)
φ 4.58 0.22 (4.16, 5.01) 4.56 0.22 (4.14, 4.98)
pD 6.12 4.02
DIC -263.4 -264.6
LPML 1110.2 1111.6

0.5 Intercept 0.43 0.08 (0.28, 0.58) 0.38 0.05 (0.29, 0.48)
Specialty: SS -0.14 0.08 (-0.30, 0.02)
Specialty: ES -0.32 0.13 (-0.57, -0.08) -0.21 0.11 (-0.41, 0.00)
Country: P -0.31 0.08 (-0.48, -0.16) -0.35 0.08 (-0.50, -0.20)
Sex: M 0.04 0.08 (-0.11, 0.19)
φ 3.72 0.22 (3.29, 4.12) 3.69 0.21 (3.28, 4.12)
pD 6.05 4.03
DIC -263.6 -268.6
LPML 1109.3 1110.8

0.75 Intercept 0.68 0.08 (0.54, 0.83) 0.64 0.05 (0.55, 0.74)
Specialty: SS -0.13 0.08 (-0.29, 0.02)
Specialty: ES -0.31 0.12 (-0.54, -0.08) -0.20 0.10 (-0.39, -0.01)
Country: P -0.29 0.08 (-0.45, -0.15) -0.34 0.07 (-0.48, -0.19)
Sex: M 0.03 0.07 (-0.10, 0.18)
φ 3.04 0.21 (2.59, 3.43) 3.01 0.21 (2.59, 3.41)
pD 6.01 4.04
DIC -263.7 -268.6
LPML 1108.8 1110.6

Table 2 collects some posterior summaries. Based on the DIC and LPML values, hereafter

we report only results for the reduced models.

For the reduced models in Table 2, in Figure 2 we show the histograms of the posterior sam-

ples of Q(Y ,θ) in Section 4.1 and the Gamma(146, 1) density function. Since the histograms

and the density function overlap each other in a great extent, these plots do not suggest serious

departures from the postulated model. The same pattern was observed for the full models in

15



Table 2.

Q

D
en

si
ty

100 120 140 160 1800.
00

0
0.

01
0

0.
02

0
0.

03
0

(a) 0.25-quantile

Q
D

en
si

ty
100 120 140 160 1800.

00
0

0.
01

0
0.

02
0

0.
03

0

(b) 0.5-quantile

Q

D
en

si
ty

100 120 140 160 1800.
00

0
0.

01
0

0.
02

0
0.

03
0

(c) 0.75-quantile

Figure 2: Histograms of the posterior samples of Q(Y ,θ) for the reduced models and the
Gamma(146, 1) density function.

Figure 3 displays some plots for the 0.75-quantile model. According to the trace plots, we

see that the chains show a good mixing. The posterior densities are approximately symmetric,

so that the effective number of parameters pD closely matches the actual number of parameters

in Table 2.

Not surprisingly, the posterior means in Tables 1 and 2 have the same sign. We observe

that larger the quantile, smaller the estimate of the shape parameter φ, indicating less precision

and higher kurtosis for the quantile of attitude. We also note that the estimates for the 0.5-

quantile model and the beta regression model in Table 1 are similar. The effect of specialty

slightly changes from non-significant to significant. This point can be seen as a novelty and

a strength of our analysis, for the role of a covariate is not necessarily important at different

levels (quantiles) of the response variable.

From (7) we obtain a closed form expression for the quantil of attitude toward Statistics for

each teacher, that is κi = gq(x
T
i β), where xi is the vector of covariates for the i-th teacher, gq(·)

is cdf of the logistic distribution, and β is the coefficient vector associated with the covariates.
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functions of the parameters for the 0.75-quantile reduced model.
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For a given q, using the output of the Gibbs sampler we get samples of the q-quantile κi(q) for

each individual. Since in this application x1 (country) and x2 (specialty) in the reduced models

are dummy binary variables, four groups can be formed by the combination of the values of x1

and x2 and, consequently, posterior quantiles of attitude estimates for different groups can be

obtained and compared.

Figure 4 shows posterior summaries for the 0.25, 0.5, and 0.75 quantiles of attitude estimated

for different groups considered by the combination of covariates values in this study. This figure

synthesizes the effects of the covariates on the quantiles. There are four different combinations

of the levels of specialty and country. Note that for Spanish teachers, comparing the teachers

of Sciences/Social Sciences and Elementary School teachers, the three 95% HPD intervals of

attitude do not intersect. Note also the higher variability in the attitude for Peruvian teachers.

As pointed out by Estrada et al. (2010), this can be explained, at least partially, since in Spain

there is a greater effort in Statistics teachers’ formation, curriculum organization, and didactics.

We show that covariates are influent for different levels of score of attitudes, that is, we show

how regression coefficients of a given covariate change for different quantiles of the attitude

toward Statistics.

6 Final comments

In this paper a new quantile parametric regression model for bounded response variables is

proposed. Our model is built upon the distribution introduced by Kumaraswamy (1980). A

reparametrization of this distribution in terms of a given quantile and the shape parameter

enables us to link any quantile of the distribution to covariates. Inference is based on a Bayesian

approach with proper (and vague) prior distributions. Since the posterior distribution is not

amenable to analytical treatment, we rely on Markov Chain Monte Carlo methods. Results
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Figure 4: Posterior means and 95% HPD intervals for the 0.25- (black), 0.50- (red), and 0.75-
quantiles (blue) of attitude estimated for different groups considered, from left to right. 1
(x1 = 0, x2 = 0): Spanish teachers of Sciences/Social Sciences, 2 (x1 = 0, x2 = 1): Elementary
School Spanish teachers, 3 (x1 = 1, x2 = 0): Peruvian teachers of Sciences/Social Sciences, and
4 (x1 = 1, x2 = 1): Elementary School Peruvian teachers.

from a simulation study shows that even in case of extreme quantiles our Bayesian proposal

yields estimators with a good performance. Furthermore, an application with a data set on

attitudes of Peruvian and Spanish teachers toward Statistics is given.

We envision future works exploring different link functions in (7), possibly asymmetric ones.

Bayesian diagnostic tools (Peng & Dey, 1995) are also of interest. Models for zero-inflated and

one-inflated data sets would extend the present paper, as well as extensions to longitudinal data

(Geraci & Bottai, 2007), to clustered data (Reich et al., 2010), and to censored data (Wang
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et al., 2013), noticing that in these works the response variable is unbounded.

Finally, the method can be easily programmed, as can be seen in Appendix B, and then

easily used for data modeling, so that the quantile parametric regression model proposed here

is an altenartive modeling for bounded response variables.
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A Derivatives of the log-likelihood function

In this appendix we present the expressions of the first and second derivatives of the log-

likelihood function of our model. These expressions are used in Section 4. From (9) and (7),

we get, for j = 1, . . . , k,

∂`(θ|Y )

∂βj
=

n∑
i=1

∂`i(θ|Y )

∂κi
g′(ηi)

∂ηi
∂βj

=
n∑
i=1

∂`i(θ|Y )

∂κi
g′(ηi)xij,
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where g′(ηi) = ∂κi/∂ηi, with

∂`i(θ|Y )

∂κi
= − 1

κi log(κi)
−
φ log(yi)

{
log(1−q)

log(1−e−φ)
− 1

}
y
− φ

log(κi)

i

κi log2(κi)

{
1− y

− φ
log(κi)

i

} +
φ log(yi)

κi log2(κi)

and

∂`i(θ|Y )

∂φ
= −

e−φ log(1− q) log

(
1− y

− φ
log(κi)

i

)
(1− e−φ) log2 (1− e−φ)

+

log(yi)

{
log(1−q)

log(1−e−φ)
− 1

}
y
− φ

log(κi)

i

log(κi)

{
1− y

− φ
log(κi)

i

}
− log(yi)

log(κi)
+

1

φ
− e−φ

(1− e−φ) log (1− e−φ)
.

The second derivative of `(θ|Y ) with respect to βj is given by

∂2`(θ|Y )

∂β2
j

=
n∑
i=1

{
∂2`i(θ|Y )

∂κi
g′ 2(ηi) +

∂`i(θ|Y )

∂κi
g′′(ηi)

}
x2ij, (A1)

for j, . . . , k, with

∂2`i(θ|Y )

∂κ2i
=

1

κ2i log2(κi)
+

1

κ2i log(κi)
+

{
log(1− q)

log (1− e−φ)
− 1

}

×

[
− φ2 log2(yi)y

− 2φ
log(κi)

i

κ2i log4(κi)

{
1− y

− φ
log(κi)

i

}2 −
φ2 log2(yi)y

− φ
log(κi)

i

κ2i log4(κi)

{
1− y

− φ
log(κi)

i

}

+
2φ log(yi)y

− φ
log(κi)

i

κ2i log3(κi)

{
1− y

− φ
log(κi)

i

} +
φ log(yi)y

− φ
log(κi)

i

κ2i log2(κi)

{
1− y

− φ
log(κi)

i

}]

− φ
{

2

κ2i log3(κi)
+

1

κ2i log2(κi)

}
log(yi).
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Finally, the second derivative of `(θ|Y ) with respect to φ is given by

∂2`(θ|Y )

∂φ2
=

n∑
i=1

− 2e−φ log(1− q) log(yi)y
− φ

log(κi)

i

(1− e−φ) log(κi) log2 (1− e−φ)

{
1− y

− φ
log(κi)

i

}

+

{
log(1− q)

log (1− e−φ)
− 1

}[
− log2(yi)y

− 2φ
log(κi)

i

log2(κi)

{
1− y

− φ
log(κi)

i

}2 −
log2(yi)y

− φ
log(κi)

i

log2(κi)

{
1− y

− φ
log(κi)

i

}]

+ log(1− q)

{
2e−2φ

(1− e−φ)2 log3 (1− e−φ)
+

e−φ

(1− e−φ) log2 (1− e−φ)

+
e−2φ

(1− e−φ)2 log2 (1− e−φ)

}
log

(
1− y

− φ
log(κi)

i

)
+ n

{
e−2φ

(1− e−φ)2 log2 (1− e−φ)
− 1

φ2

+
e−φ

(1− e−φ) log (1− e−φ)
+

e−2φ

(1− e−φ)2 log (1− e−φ)

}
.

(A2)

B BUGS code

The BUGS code developed in the WinBUGS framework (Lunn et al., 2000) for the full models

in Table 2 is given below. We adopted the logit link for the quantile parameter and the log

link for the precision parameter. The hyperparameters in the prior distributions for all the

parameters need to be specified by the user, as well as the probability q corresponding to the

quantile of interest.

model

{

for (i in 1:n) {

L[i] <- exp(logLike[i])

ones[i] <- 1

p[i] <- L[i] / C

ones[i] ~ dbern(p[i])
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logLike[i] <- log(a[i]) + log(b) + (a[i] - 1) * log(y[i]) +

(b - 1) * log(1 - pow(y[i], a[i]))

a[i] <- -phi / log(kappa[i])

logit(kappa[i]) <- beta[1] + beta[2] * x1[i] + beta[3] *

x2[i] + beta[4] * x3[i] + beta[5] * x4[i]

}

b <- log(1 - q) / log(1 - exp(-phi))

for (j in 1:k) {

beta[j] ~ dnorm(0.0, 1.0E-04)

}

logphi ~ dnorm(0.0, 1.0E-04)

phi <- exp(logphi)

C <- 1.0E+05

}
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