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Abstract

Variable taking value on (0, 1), such as rates or proportions, are frequently analysed by researchers,

for instance, political and social data as well as Human Development Index. However, sometime

this type of data cannot be modelled adequately using a unique distribution. In this case, we can

use a mixture of distribution that is a powerful and flexible probabilistic tool. This manuscript

deals with a mixture of simplex distribution for model proportional data. A Full Bayesian approach

is considered in the inference process with Reversible-jump Markov Chain Monte Carlo method.

The usefulness of the proposed approach is confirmed by use of the simulated mixture data from

several different scenarios and through an application of the methodology to analyses municipal

Human Development Index data of the cities (or towns) of the Northeast region and São Paulo

state in Brazil.

Key words: Bayesian Analysis, Markov chain Monte Carlo, Mixture model, Simplex distribution,

Human development index.

1 Introduction

Variable taking values on (0, 1), such as index and proportions, are frequently analysed by

researchers, for instance, Impartial Anonymous Culture (Stensholt, 1999) and the Human Development
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Index (HDI) (McDonald & Ransom, 2008; Cifuentes et al., 2008). Sometimes, the data cannot be

modelled adequately using a unique distribution as is the case of the proportion of votes obtained by

a political party in Presidential Elections in each cities of an country analysed in (Paz et al., 2015).

In addition, in the data of HDI of several regions in Brazil different components can be identified, see

index in Fundação Instituto Brasileiro de Geografia e Estat́ıstica (2014).

The models with mixture of distributions can be a powerful and flexible probabilistic tool

for modelling many kind of the data, see for example McLachlan & Peel (2004). In financial data we

can cite Faria & Gonalves (2013). In addition, mixture of distributions have been widely analysed

for normal data, see for example Tanner & Wong (1987); Gelfand & Smith (1990); Diebolt & Robert

(1994); Richardson & Green (1997). For data in (0,1) there are some works which consider a finite

mixture of Beta distributions (Bouguila et al., 2006; Bouguila & Elguebaly, 2012). However there

are in the literature other distributions which take values on (0,1), such as simplex distribution, for

instance. The simplex distribution was proposed by Barndorff-Nielsen & Jorgensen (1991) and recently

has been considered as a complementary and alternative regression model to the beta regression model

(López, 2013; Song & Tan, 2000).

This manuscript deals with a new framework for modelling the bounded variables with multi-

modality as a complementary model to the correspondent beta model. The model proposed considerer

a mixture of simplex distribution with the number of components unknown (simplex mixture model).

This work is motivated by the municipal HDI data in Brazil. Thus, at present we focus on the iden-

tification of the numbers of components and the characteristics of each population identified by the

model considering the HDI of the cities of São Paulo state and Northeast region of Brazil. For the

inference process a fully Bayesian analysis is assumed where the unknown number of components and

the parameters should be regarded as drawn from appropriate prior distribution. For dealing with the

problem of estimating the number of components of the mixture model we adopt a reversible-jump

Markov chain Monte Carlo (RJMCMC) approach proposed, in the case of mixture of normal distri-

butions, by Green (1995) and Richardson & Green (1997). The results obtained are promising since
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that the performance of the method is tested by applying it to simulated data sets from mixture of

simplex distributions, considering several different scenarios.

In future developments we can consider that the phenomenon can be explained by sociological

and economical factors which should be included. In addition the response variable might be associated

considering geospatial information as potential covariates.

The remainder of the manuscript is organized as follows: The Section 2 is dedicated to give

a description of general mixture model. In Section 3 we present the mixture of simplex distributions.

Section 4 addresses the Bayesian Inference approach considering estimation RJMCMC. The Section

5 is dedicate to investigate if our algorithm is able to estimate the mixture parameters and select the

number of components considering several scenarios of generated data. In the Section 6 we present an

analysis of the municipal HDI data set considered show that are strong evidence for two component

of cities we found that some cities in the Northeast region of Brazil show HDI similar to cities of the

Paulo state. Finally, some conclusions are drawn in Section 7 .

2 The general mixture model

Finite mixture of distributions is a flexible method of modelling. Its more direct role in data

analysis and inference is to provide a convenient and flexible family of distributions to estimate or

approximate distributions which are not well modelled by any standard parametric family. This type

of model is useful in the modelling of data from a heterogeneous population, that is, a population

which can be divided in clusters or components. In this sense, the components in the data can be

modelled for uni-modal distributions. For more details about modelling and applications of finite

mixture models, see for example McLachlan & Peel (2000).

Consider initially a sequence of n continuous random variables Y = (Y1, ..., Yn) each following

a distribution with probability density function (pdf) fi(.|θi) for i = 1, . . . , n. Now suppose that

fi(.|θi) = fj(.|θj) for some i’s where j = 1, .., k with 1 6 k 6 n. Thus, a random variable Y ∈ Y is
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said to follow a mixture of distributions with k components and its probability density function (pdf)

can be write as

f(y|θ,ω, k) =
k∑
j=1

ωjfj(y|θj) (1)

where each fj(y|θj) is a pdf called component density of the mixture, indexed by a parameter vector

θj (here we write f(y|θj) without the index j because the component density belong to the same

parametric family), θ = (θ1, ..., θk) is a vector containing all the parameters of the components in the

mixture and the components of the vector ω = (ω1, . . . , ωk) are called weights of the mixture where

0 < ωj < 1 with
∑k

j=1 ωj = 1. In the equation (1) k is the number of components in the mixture.

We call the model defined by the pdf in (1) mixture model, whose distribution is called mixtures

of distributions. For a review on exwhoseisting techniques for Bayesian modelling and inference on

mixtures of distributions, see for example Marin et al. (2005).

In order to make inference about the parameters of the mixture model, suppose Y =

(Y1, ..., Yn) a random sample from the distribution defined by equation (1). The likelihood func-

tion related to a sample y = (y1, ..., yn), where each yi is a observation of Yi for i = 1, ..., n, is given

by

L(θ,ω, k|y) =
n∏
i=1

k∑
j=1

ωjf(yi|θj).

A way to simplify the inference process of mixture model is to consider a unobserved random vector

Zi = (Zi1, ..., Zik) such that Zij = 1 if the ith observation is from the jth mixture component and

Zij = 0 otherwise, i = 1, . . . , n. Note that
∑k

j=1 Zij = 1 then we suppose each random vector Z1, .., Zn

is distributed according to the multinomial distribution with parameters 1 and ω = (ω1, ..., ωk) =

(P (Zi1 = 1|ω, k), ..., P (Zik = 1|ω, k)), for i = 1, ..., n. Then

P (Zij = 1|yi, θj , ω, k) ∝ P (Zij = 1|ω, k)f(yi|Zij = 1, θj ,ω, k),

j = 1, ..., k, i = 1, . . . , n. To simplify the notation we consider Z = (Z1, ..., Zn) an vector nk containing

all the unobserved indicator vectors Zi. Note that the distribution of each Yi given Zi has pdf given
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by

f(yi|Zi,θ, k) =

k∏
j=1

[
f(yi|θj)

]Zij (2)

then the joint distribution of (Yi, Zi) can be written as

f(yi, Zi|θ,ω, k) = P (Zi|ω, k)f(yi|Zi,θ, k) =
k∏
j=1

[
ωjf(yi|θj)

]Zij . (3)

Note that, the vector Zi have just one component equal to 1 and the others equal to zero then

k∏
j=1

[
ωjf(yi|θj)

]Zij=



ω1f(yi|θ1) if Zi = (1, 0, ..., 0)

ω2f(yi|θ2) if Zi = (0, 1, ..., 0)

...
...

ωkf(yi|θk) if Zi = (0, 0, ..., 1)

thus,

f(yi|θ,ω, k) =
∑
Zi

f(yi, Zi|θ,ω, k) =

k∑
j=1

ωjf(yi|θj). (4)

After the inclusion of the indicator vectors in the model, the augmented data likelihood to

(y,Z) can be written as

L(θ,ω, k|y,Z) =
n∏
i=1

k∏
j=1

[
ωjf(yi|θj)

]Zij . (5)

Finally, the joint distribution of all variables of the model including the augmented version

and the prior specifications is

P (y,θ,Z,ω, k) = f(y|θ,Z,ω, k)P (θ|Z,ω, k)P (Z|ω, k)P (ω|k)P (k).

Here, we assume conditional independence such that

P (θ|Z,ω, k) = P (θ|Z, k) and P (y|θ,Z,ω, k) = P (y|θ,Z)

to obtain

P (y,θ,Z,ω, k) = P (y|θ,Z)P (θ|Z, k)P (Z|ω, k)P (ω|k)P (k), (6)

where P (Z|ω, k) =
∏n
i=1 P (Zi|ω, k) =

∏n
i=1

(∏k
j=1 ω

Zij
j

)
.
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3 Simplex Mixture Distribution

Now consider a sequence of n continuous random variables Y where each Y ∈ Y assume

values in (0,1) and follow the distribution whose pdf is given by (1). Let consider that the component

densities, fj(.|θj) for j = 1, ..., k, are taken to belong the simplex distribution (Jørgensen, 1997), whose

pdf is given by

S(y|µ, σ2) =
(
2πσ2 (y(1− y))3

)−1/2
exp

{
−
(

1

2σ2

)(
(y − µ)2

y(1− y)µ2(1− µ)2

)}
I(0,1)(y), (7)

where 0 < µ < 1 is the location parameter and σ2 > 0 is the dispersion parameter. The mean of

simplex distribution is given by E(Y ) = µ. Since the components density fj(.|θj) are taken to belong

to the simplex family, we shall refer the component density in the mixture as simplex component, the

model given by (1) as Simplex Mixture (SM) and to rewrite its pdf as

P (y|θ,ω, k) =

k∑
j=1

ωjS(y|µj , σ2j ) (8)

where θ = (θ1, ..., θk) with each θj = (µj , σ
2
j )

4 Inference

Consider y = (y1, .., yn) a realization of Y where yi is the observed value of the Yi, for

i = 1, ..., n, then the likelihood corresponding to a SM model with k-component is given by

L(θ,ω, k|y) =

n∏
i=1

k∑
j=1

wjS(yi|µj , σ2j ). (9)

Thus, the augmented data likelihood to (y,Z) can be written as

L(θ,ω, k|y,Z) =
n∏
i=1

k∏
j=1

[
ωjS(yi|µj , σ2j )

]Zij . (10)

The representation of a mixture model, presented in this thesis, precludes the use of improper

prior. This is because improper prior lead to improper posterior when some the component became

empty. We define the prior, which we suppose that are all drawn independently since that is a common

assumption taken generally when defining Bayesian models. For the distribution of P (θ|k) consider
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φj = σ−2j , then for the parameters θj = (µj , φj) given k we assume the following independent prior

µj |k ∼ Uniform(0, 1) and φj |k ∼ Gamma(a, b), j = 1, . . . , k, (11)

where the hyperparameters a and b are fixed.

Also, for P (ω|k) since the vector of weights ω is defined on the simplex {ω ∈ Rk : 0 <

ωj < 1, j = 1, ..., k,
∑k

j=1 ωj = 1} we consider a Dirichlet prior distribution for ω given k, that is

ω|k ∼ Dirichlet(ν1, ..., νk). Finally, for P (k), that is to the parameter k we adopt a uniform distribu-

tion between 1 and kmax.

Therefore, the full conditional posterior distributions can be obtained and consequently a

Markov chain Monte Carlo method (MCMC) (Ross, 2006, pages, 245 - 271) can be used to sample

from the joint probability distribution of the parameters (θ,ω, k), given the observed data y, Z. Then

the sample of the joint posterior distribution produced by MCMC is used for Bayesian inference.

The full conditional distributions of the parameters for jth components as given by

P (φj |y,Z, µj) ∝ φ
nj/2+a−1

j exp

−φj
 ∑
i∈{i:Zij=1}

(yi − µj)2

2yi(1− yi)µ2
j (1− µj)2

+ b

 (12)

P (µj |y,Z, φj) ∝ exp

− φj
2µ2

j (1− µj)2
∑

i∈{i:Zij=1}

(
(yi − µj)2

yi(1− yi)

) , (13)

where nj =
∑n

i=1 Zij denotes the number of observations drawn from a jth component of the mixture.

Note that (φj |y, Z, µj) ∼ Gamma(nj/2 + a,
∑

i∈{i:Zij=1}

(yi − µj)2

2yi(1− yi)µ2
j (1− µj)2

+ b). In addition, the full

conditional density of ω is

P (ω|y,Z) ∝
k∏
j=1

ω
νj+nj−1
j , (14)

that is the pdf of a Dirichlet distribution, that is, (ω|y, Z) ∼ Dirichlet (ν1 + n1, ..., νk + nk).

The parameter k is estimated by use the reversible-jump step, which is described in details

in the Subsection 4.1. A step by step description of the whole algorithm specific to simulate this

distributions is given in Appendix A.1.
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4.1 Reversible-jump for the number of component in the mixture

Reversible-jump MCMC was introduced by Green (1995) as an extension to MCMC in which

the dimension or number of components of the model is uncertain and need to be estimated. The move

in the RJ step, called split-combine moves, allow to increases or reduces the number of components

by one in each step. In each move, the reversible-jump compare two models with different number of

simplex components.

The split-combine move form a reversible pair. For these pair, we choosing the proposal

distribution Tk→k∗ according to informal considerations in order to obtain a reasonable probability

of acceptance. The notation Tk→k∗ means proposal transition function for the move of model with k

simplex component to model with k∗ simplex component. This move is chosen with probability pk∗|k.

Since the parametric space of parameters (θ,ω, k) is different from (θ∗,ω∗, k∗), the smaller parameter

space should be increased. We generate a three-dimensional random vector u from a g(u) to complete

the parameters space. Green (1995) show that the balance condition is determined by the acceptance

probability to this move given by α((θ∗,ω∗, k∗)|(θ,ω, k)) = min{1, A} where

A =
L((θ∗,ω∗, k∗)|y, Z)P ((θ∗,ω∗)|k∗)P (k∗)pk|k∗

L((θ,ω, k)|y, Z)P ((θ,ω)|k)P (k)pk∗|kg(u)
|J | , (15)

where J is the Jacobian of transformation. The probability of the inverse of move is given by

α((θ,ω, k)|(θ∗,ω∗, k∗)) = min{1, A−1}.

The choice between split or combine move is made randomly with probability bk and dk =

1 − bk respectively, depending on k. Note that d1 = 0 and bkmax = 0 with kmax being a constant

representing the maximum value allowed for k, as seen in the previous subsection. If 2 < k < kmax

we adopt bk = dk = 0.5.

If the split move is chosen, we select randomly one component j∗ to break into two new

components (j1, j2) and create a new state with k∗ = k + 1 component. In order to specify the

new values of parameters for the two components, generate the vector u = (u1, u2, u3) from beta

distributions, i.e., u1 ∼ Beta(2, 2), u2 ∼ Beta(1, 1) and u3 ∼ Beta(2, 2). Than the new parameters
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are set as

ωj1 = ωj∗u1, ωj2 = ωj∗(1− u1),

µj1 = µj∗ − u2u1(µj∗ − µ2j∗), µj2 = µj∗ + u2(1− u1)(µj∗ − µ2j∗),

σ2j1 = σ2j∗u3(1− u
2
2)/u1, σ2j2 = σ2j∗(1− u3)(1− u

2
2)/(1− u1).

(16)

All the observation previously allocated to j∗ is reallocated doing zi = j1 or zi = j2 follow the same

criteria used on the Gibbs sampling algorithm (2a).

The combine proposal begins by choosing a pair of component (j1, j2), which the first is

chosen randomly, in a uniform way, and the second is chosen by making j2 = j1 + 1, the kth com-

ponent can not chosen in the first place. This two components are merged, reducing k by 1. The

new component is labelled j∗ and contain all the observation previously allocated to j1 and j2 doing

zi = j∗. The parameters for the component j∗ are set as ωj∗ = ωj1 + ωj2 , µj∗ =
µj1ωj2+µj2ωj1

ωj∗
and

σ2j∗ =
σ2
j2

(
ωj2
ωj∗

)
1−

(
µj2
−µj1

µj∗−µ
2
j∗

)2
( σ2

j2
ωj2

σ2
j1
ωj1

+σ2
j2
ωj2

) . This process is reversible, i.e., if we first split one component in

two and then combine the components j1 and j2 we can recover the previous state. Also we can com-

pute corresponding value of ui’s in the merge move as u1 =
ωj1
ωj∗

, u2 =
µj2−µj1
µj∗−µ2j∗

and u3 =
ωj1σ

2
j1

ωj1σ
2
j1
+ωj2σ

2
j2

.

The acceptance probability for split and combine are min{1, A} and min{1, A−1} respectively, accord-

ing to (15), with

A =

(k + 1)

 ∏
i∈{i:Zij1

=1}

S(yi|µj1σ
2
j1)

 ∏
i∈{i:Zij2

=1}

S(yi|µj2σ
2
j2)


 ∏
i∈{i:Zij∗=1}

S(yi|µj∗σ
2
j∗)


×P (k + 1)

P (k)

ων−1+n1
j1

ων−1+n2
j2

ων−1+n1+n2
j∗

P (σ2
j2)P (σ2

j2)

P (σ2
j∗)

P (µj2)P (µj2)

P (µj∗)

× dk+1

bkPallocg(u)

1

2

(
σ2
j1 + σ2

j2

)
(ωj1 + ωj2)

[
2 (µj1 + µj2)− (µj1 + µj2)

2] ,

where dk+1 is the probability of choosing the merge movement between the components j1 and j2,

bk is the probability of choosing the split movement of the component j∗, Palloc is the probability

of a specific allocation defined as the product of conditional posterior probabilities used to allocate

the observations, g(u) is the joint distribution of u given by product of density of beta distributions,

(k+1) is the ratio (k+1)!
k! from the order statistics densities for the parameters (µ, σ2) and the last term

of equation is the Jacobian of the transformations used to complete the dimension. The second term
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in (17) is the rate of the density of the prior distribution.

5 Analysis of simulated data sets in several scenarios

This subsection is dedicated to investigate if our algorithm is able to estimate the mixture

parameters and select the number of clusters effectively considering several scenarios of generated data.

For this purpose, we implemented the algorithm described in Appendix A.1 by using the R program

(R Development Core Team, 2015). The analysis was conduced to simulated data set considering

six scenarios to simplex mixture models We simulated independent values Y ∼ SM(µ, σ2,ω, k) with

k ∈ {2, 3}. The parameters of the six models are shown in the first column of Table 1 and are noted

asM1, ...,M6. For each model we simulated tree data sets, being the first with size n = 1000 and the

others two with size n < 1000, as seen in the second column of Table 1. The value of kmax was fixed

in 5 and the hyper-parameters for gamma prior were fixed in a = 2 and b = 1/2. After discarding the

first 100000 iterations, we used 100000 iterations with thinning equal to 10 to the inference process.

The posterior relative frequency of k, shown in Table 1, gives evidence that the reversible-

jump estimated correctly the number of components to these simulated data sets. In addition, Tables

2 and 3 shows the estimated values of parameters to the six models. Posterior mean and empirical

standard deviation (SD) are shown in this table. We can observe that the SD decrease as n increase

and the estimated values of the parameters are always close the true values. Finally, we show the

real histogram and estimated density in Figure 1 which confirm the adequate performance of the

estimation method to the simulated data sets.
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Table 1: Parameters used to simulate the data sets and the posterior relative frequency for the number of components

obtained from the each simulated data set of the size n.

Model n Posterior relative frequency

k=1 k=2 k=3 k=4 k=5

M1



µ = (0.34, 0.72)

σ2 = (0.8, 1.5)

w = (0.5, 0.5)

1000 0 0.9874 0.0125 0.0001 0

500 0 0.9804 0.0194 0.0002 0

100 0.2790 0.6866 0.0333 0.0010 0.

M2



µ = (0.08, 0.40)

σ2 = (2, 1)

w = (0.65, 0.35)

1000 0 0.9941 0.0059 0 0

500 0 0.9852 0.0145 0.0003 0

100 0.1060 0.8532 0.0389 0.002 0.0001

M3



µ = (0.23, 0.58)

σ2 = (1.8, 0.8)

w = (0.30, 0.70)

1000 0 0.9876 0.0123 0.0001 0

500 0 0.9843 0.0154 0.0002 0.0001

100 0.1648 0.7711 0.0591 0.005 0

M4



µ = (0.30, 0.55, 0.80)

σ2 = (0.20, 0.10, 0.20)

w = (0.20, 0.30, 0.50)

1000 0.01 0.051 0.9370 0.0024 0

500 0.0062 0.0523 0.9387 0.0028 0

300 0.0199 0.3393 0.6316 0.009 0.0003

M5



µ = (0.15, 0.47, 0.75)

σ2 = (5.0, 0.2, 0.8)

w = (0.25, 0.45, 0.30)

1000 0.0001 0.1140 0.8667 0.0189 0.0003

500 0.0005 0.1660 0.8157 0.0177 0.0001

400 0.0023 0.3831 0.5906 0.0240 0

M6



µ = (0.10, 0.50, 0.90)

σ2 = (6.0, 0.5, 8.0)

w = (0.3, 0.50, 0.20)

1000 0.0047 0.0208 0.9518 0.0224 0.0003

500 0.0126 0.0583 0.8984 0.0388 0.001

400 0.0106 0.1409 0.7929 0.0536 0.0020
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Table 2: Posterior mean of the parameters and empirical standard deviation (SD) for each simulated data set considering

six models with k = 2 described in Table 1.

Model n Estimative to µ Estimative to σ2 Estimative to ω

M1

1000
Mean

SD’s

(0.33, 0.71) (0.69, 1.57) (0.46, 0.54)

(0.005, 0.006) (0.061, 0.134) (0.019, 0.016)

500
Mean

SD’s

(0.33, 0.72) (0.77, 1.43) (0.47, 0.53)

(0.010, 0.011) (0.1225, 0.1990) (0.031, 0.031)

100
Mean

SD’s

(0.35, 0.69) (0.61, 1.83) (0.41, 0.59)

(0.041,0.047) (0.556, 0.741) (0.123,0.123)

M2

1000
Mean

SD’s

(0.082,0.40) (1.99, 0.98) (0.70, 0.3)

(0.001, 0.006) (0.1178, 0.0915) (0.015,0.015)

500
Mean

SD’s

(0.079, 0.40) (2.00, 0.89) (0.68, 0.32)

(0.002, 0.008) (0.3417, 0.1115) (0.021, 0.021)

100
Mean

SD’s

(0.091,0.40) (2.96, 0.77) (0.72,0.28)

(0.008, 0.026) (0.811, 0.661) (0.058,0.058)

M3

1000
Mean

SD’s

(0.21,0.61) (1.86,0.91) (0.29, 0.71)

(0.009, 0.005) (0.2386, 0.0659) (0.018, 0.018)

500
Mean

SD’s

(0.19,0.60) (2.03, 1.08) (0.27, 0.73)

(0.012, 0.003) (0.970, 0.1327) (0.028, 0.028)

100
Mean

SD’s

(0.24, 0.58) (2.00, 1.11) (0.23, 0.77)

(0.078, 0.028) (2.085, 0.706) (0.111, 0.111 )
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Figure 1: Histograms and estimated density function
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Table 3: Posterior mean of the parameters and empirical standard deviation (SD) for simulated data set considering

six models with k = 3 described in Table 1.

Model n Estimative to µ Estimative to σ2 Estimative to ω

M4

1000
Mean

SD’s

(0.30, 0.55, 0.80) (0.20, 0.12, 0.18) (0.18, 0.31, 0.51)

(0.007, 0.004, 0.03) (0.07, 0.08, 0.05) (0.01, 0.02, 0.02)

500
Mean

SD’s

(0.30 0.55 0.80) (0.23,0.10,0.20) (0.17 0.31 0.52)

(0.009 0.007 0.007) (0.10, 0.10 0.06) (0.02 0.02 0.02)

300
Mean

SD’s

(0.30, 0.55, 0.80) (0.27, 0.13, 0.22) (0.17, 0.32, 0.52)

(0.025, 0.016, 0.014) (0.32, 0.25, 0.13) (0.034, 0.042, 0.041)

M5

1000
Mean

SD’s

(0.16, 0.47, 0.76) (5.25, 0.21, 0.77) (0.24, 0.45, 0.31)

(0.01, 0.01, 0.01) (0.7, 0.1, 0.1) (0.02, 0.02, 0.02)

500
Mean

SD’s

(0.14, 0.46, 0.75) (3.19, 0.26, 0.76) (0.20 0.47 0.33)

(0.02, 0.01, 0.01) (0.65, 0.26, 0.19) (0.02, 0.03, 0.03)

400
Mean

SD’s

(0.15, 0.48, 0.76) (4.41, 0.37, 0.83) (0.20, 0.45, 0.35)

(0.031, 0.038, 0.028) (2.9, 1.8, 0.35) (0.04, 0.06, 0.07)

M6

1000
Mean

SD’s

(0.10, 0.50, 0.89) (7.34, 0.58, 7.50) (0.31, 0.51, 0.18)

(0.012, 0.009, 0.026) (0.9, 0.9, 1.9) (0.02, 0.02, 0.02)

500
Mean

SD’s

(0.098, 0.49, 0.88) (6.05, 0.73, 9.25) (0.31, 0.51, 0.18)

(0.02, 0.01, 0.06) (6,3,4) (0.03, 0.04, 0.06)

400
Mean

SD’s

(0.097, 0.49, 0.87) (4.843, 1.00, 10.45) (0.31, 0.49, 0.20)

(0.02, 0.03, 0.08) (1, 5, 6) (0.05, 0.05, 0.06)

We observed in the simulation process that the convergence speed is improved if initial value

of number of component is set as k(0) = kmax. The convergence is also affected by the acceptance of

MR step in the Gibbs sampling algorithm then a strategy to avoid low rate of acceptance in the MR

step is presented in Appendix A.1.

6 Analysis of municipal HDI data set in Brazil

The Human Development Index (HDI) is a summary measure of long-term progress in three

basic dimensions of human development that takes into account education, income and longevity

indexes. The HDI is the geometric mean of normalized indexes for each of the three dimensions of

human development. In this work we analyse the municipal HDI data set, that is, the HDI of the cities
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(or towns) of São Paulo state and Northeast region of Brazil. The Northeast was chosen because it is

the third largest region of Brazil and the largest in number of states and considered a region with poor

distribution of resources, see index in Fundação Instituto Brasileiro de Geografia e Estat́ıstica (2014).

In this region are the states of Alagoas, Bahia, Ceará, Maranhão, Paráıba, Pernambuco, Piaúı, Rio

Grande do Norte and Sergipe. There are 1794 cities in the Northeastern region and 645 in São Paulo

state leading to a sample of size n = 2439. The histogram of the data is showed in Figure 2 where

we can see the multimodality phenomenon. This phenomenon is already expected because the HDI

depend of characteristics that can be similar to some cities or towns.

Table 4: Relative frequency of k to the municipal HDI data set considering alternative SM models.

k 1 2 3 4 5

0.073 0.923 0.005 0.0004 0

The municipal HDI data set was analysed with the SD model where we set a = 2 and b = 1/2

in the gamma prior distribution to σ−2j , for j = 1, ..., k. In order to reduce prior information we set

ν1 = ν2 = ... = νk = 1 to Dirichlet prior distribution and kmax = 5 to prior distribution of k. Table 4

show the posterior distribution of parameter k with high posterior probability to k = 2. Then, there

are evidence for two components in the data. The mean and empirical SD of the parameter estimate

are showed in Table 5.
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Figure 2: Real histogram and Estimated density function to the HDI data set.

Table 5: Posterior estimates of the parameters and the empirical standard deviation to the municipal HDI data set.

µ̂ σ̂2 ŵ

means SD’s means SD’s means SD’s

( 0.59, 0.73) (0.004, 0.010) (0.09, 0.21) (0.03, 0.076) (0.69, 0.31 ) (0.03, 0.031)

The results of analysis show that there are strong evidence for two component of cities

with similar characteristics. The first component have, in mean, smaller municipal HDI than second

component. The component with less municipal HDI have larger mixing proportions than second

component, as expected. The Figure 3(A) shows in red the cities classified as belonging to the first

component. We can observe that there are some cities in the Northeastern region classified in the

first component. This cities has better municipal HDI than those which are classified in the second

component, shown in (3)(B) cities detached with colour blue.
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Figure 3: Classification of HDI of cities of the states São Paulo and Northeastern region of Brazil where

the cities classified in the first component is in red (A) and cities classified in the second component

is in blue (B).

7 Final comments

The main advantage of mixture of simplex models is its flexibility for working with bounded

data with multimodality identified the components or populations in the data. A Full Bayesian

approach considering an MCMC with reversible-jump algorithm similar to the methodology proposed

by Richardson & Green (1997) and Green (1995) was developed.

An application to generated data sets from a mixture of simplex distributions with 2 and

3 components were conducted. For these applications, we found that the method provides a good

estimate to the number of component as well as the other parameters of the model since the estimated

values lie close to the real values of the parameters. In addition, the results from the simulated data

sets with different size show that the empirical standard deviation decrease as the size of sample

increase, as expected when the method works well. Another application was conduced with real data

set and we fond small empirical standard deviations to the sample of the estimates of the parameters
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of the components and mixing proportions, as we can see in Table 5.

The proposed model can be extended to the another problems, for instance, where the random

variable Y (response) can be modelled as a function of another variable x (predictor variable). In this

case, the mixing proportions can or can not be modelled as functions of a vector of predictor variable,

not necessarily having some elements in common with the vector of covariates x, a example of the link

function that can be used to mixing proportions is presented in McLachlan & Peel (2004, p. 145). In

addition, since we observed that the acceptance of RJ decrease as size of the sample increases, strategy

to avoid persistent rejection of proposed moves in a RJ algorithm can be added to improve the Gibbs

sampling algorithm, strategy are discussed in Green & Mira (2001); Al-Awadhi et al. (2004).

References

Al-Awadhi, F., Hurn, M. & Jennison, C. (2004). Improving the acceptance rate of reversible jump

MCMC proposals. Statistics and Probability Letters, 69(2), 189–198.

Barndorff-Nielsen, O. & Jorgensen, B. (1991). Some parametric models on the simplex. Journal of

Multivariate Analysis, 39(1), 106 – 116.

Bouguila, N. & Elguebaly, T. (2012). A fully Bayesian model based on reversible jump MCMC and

finite beta mixtures for clustering. Expert Syst. Appl., 39(5), 5946–5959.

Bouguila, N., Ziou, D. & Monga, E. (2006). Practical bayesian estimation of a finite beta mixture

through gibbs sampling and its applications. Statistics and Computing , 16(2), 215–225.

Cifuentes, M., Sembajwe, G., Tak, S., Gore, R., Kriebel, D. & Punnett, L. (2008). The association of

major depressive episodes with income inequality and the human development index. Social Science

and Medicine, 67(4), 529 – –539.

Diebolt, J. & Robert, C. P. (1994). Estimation of finite mixture distributions through bayesian

sampling. Journal of the Royal Statistical Society. Series B , 56(2), 363–375.

17



Faria, S. & Gonalves, F. (2013). Financial data modeling by poisson mixture regression. Journal of

Applied Statistics, 40(10), 2150–2162.

Fundação Instituto Brasileiro de Geografia e Estat́ıstica, D. d. E. e. R. (2014). Pesquisa nacional por
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A Appendix

Let’s now summarize the MCMC technique mentioned above by giving a description of the

Gibbs sampling algorithm used to sample from the joint probability distribution. The Gibbs sampling

algorithm is used combined with Metropolis-Hastings (MR and reversible-jump) algorithm for obtain

the sample of the posterior distribution of parameters (θ,ω, k) and Zi, for i = 1, ..., N . A scheme of

the algorithm is shown below.
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A.1 Algorithm

1. Initialize choosing k(t) = k(0), ω(t) = ω(0), µ
(t)
j = µ

(0)
j , (σ2j )

(t) = (σ2j )
(0) and Z

(t)
ij = Z

(0)
ij , for

i = 1, ..., n j = 1, ..., k(t).

2. For t = 0, 1, 2, . . . repeat

(a) For i = 1, ..., n draw Z
(t+1)
i ∼Multinomial(1, π

(t)
i1 , ..., π

(t)

ik(t)
), wherein

π
(t)
ij = P

(
Z

(t)
ij = 1|yi, µ(t)j , (σ

2
j )

(t)
)
∝ ωjS(yi|µ(t)j , (σ

2
j )

(t))

(b) Generate ω(t+1) from the distribution given by (14).

(c) For j = 1, ..., k(t) do

i. Generate φ
(t+1)
j from the distribution given by (12) and do (σ2j )

(t+1) = 1/φ
(t+1)
j .

ii. For updating µj a Metroplis-hastings step is done, then

• generate µ
′
j ∼ Beta

(
δ(t), η(t)

)
where (δ(t), η(t)) is computed in A.1.1.

• Compute

α
(
µ
(t)
j , µ

′
j

)
= min

{
1,

P
(
µ
′
j |y,Z,(σ2

j )
(t+1)

)
P
(
µ
(t)
j |y,Z,(σ2

j )
(t+1)

) Be
(
µ
(t)
j |δ

(t+1),η(t+1)
)

Be(µ′j |δ(t),η(t))

}
where Be(x|.) is the density of beta distribution evaluated at x.

• Generate u ∼ Uniform(0, 1)

• If α
(
µ
(t)
j , µ

′
j

)
< u then µ

(t+1)
j = µ

′
j else µ

(t+1)
j = µ

(t)
j .

(d) For updating k(t), merge two component of the mixture into one or splinting one into two

by using reversible-jump step.

A.1.1 Proposal distribution

We observed in the simulation process that the convergence of algorithm Gibbs sampling is

affected by the acceptance of MR step in (2(c)ii). In order to improve the acceptance rate of µ
′
j (

j = 1, ..., k(t) and t = 0, 1, 2, ...), in the Metropolis-Hastings step (2(c)ii) of the algorithm, we adopt
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a beta distribution as the proposal distribution where the parameters δ(t) and η(t) are obtained by

solving 
µ
(t)
j = δ(t)

δ(t)+η(t)

ψ(t) = δ(t)η(t)

(δ(t)+η(t))2(δ(t)+η(t)+1)

(17)

where µ
(t)
j and ψ(t) is the mean and variance of beta distribution with parameters δ(t) > 0 and δ(t) > 0.

Then we have 
η(t) = δ(t)

(
1

µ
(t)
j

− 1

)
δ(t) = (µ

(t)
j )2

(
1−µ(t)j
ψ(t) − 1

µ
(t)
j

) (18)

The positivity of δ(t) and δ(t) is secured by making ψ(t) < µ(t)(1−µ(t)) leading to ψ(t) = µ
(t)
j (1−µ(t)j )×τ ,

with 0 < τ < 1.
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