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Abstract

One-parameter Item response models including the Rasch model are frequently used in

large scale assessments and estimated commonly by Maximum Likelihood (ML) estima-

tion methods since that Bayesian estimation considering MCMC methods are usually

slow for large data sets. In this work, a new Bayesian estimation method considering

Integrated Nested Laplace Approximations is proposed. The method is tested through

simulation studies. Additionally, the method was also evaluated using a large data cor-

responding to a ENEM exam in Brazil. The main conclusion is that the new method

provides a Bayesian alternative to analyze large-scale data sets which provide very similar

results but it is faster than traditional MCMC method and perform similarly or better

in terms of parameter estimation than know ML estimation methods.
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1. INTRODUCTION

The estimation procedure in IRT models has been dominated by the maximum likelihood

(ML) approach. Using the this methodology, several approaches have been proposed such

as joint likelihood, marginal likelihood and conditional likelihood (Baker and Kim, 2004).

The most used approach is the marginal likelihood approach using the EM-type algorithm

with Gaussian quadrature for approximating the integrals needed for implementing the E

step of the algorithm involved in the estimation of the item parameters (Bock and Aitkin,

1981). This estimation procedure is implemented in software, as, for example, in the IRT-

PRO software (Toit, 2003). The estimation of ability parameters is performed in a second

stage with item parameters replaced by estimates computed previously. Limitations of

this methodology are discussed in Patz and Junker (1999) and Sahu (2002).

To overcome this problem, Bayesian estimation was initially proposed by Swami-

nathan and Gifford (1982). Bayesian estimation can be distinguished in estimation with

and without Markov chain Monte Carlo (MCMC). In the case of non MCMC Bayesian

estimation, Bayesian marginal estimation is used with maximum and expected a poste-

riori estimates for latent trait considering hierarchical models or not. For example, see

Baker and Kim (2004).

In Bayesian estimation the parameters are considered as random variables and then

properties of the estimates can be obtained since sample from the posterior distribution

if available. In fact, all the properties of a posterior can be approximated to any degree

of accuracy by drawing a sample that is sufficiently large. This approach to statistical

estimation is called sampling-based estimation. Sampling-based estimation allows one to

study distributions that are analytically intractable, given that one can sample from them.

In the last decades, much attention has been given to MCMC methods for generating a

sample from a posterior.
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These methods involve(s) setting up a Markov chain which in the limit generates a

dependent identically distributed (did) sample from the posterior, and (b) the use of the

Monte Carlo method for estimating properties of the posterior by properties of the did

sample. As indicated by Maris and Maris (2002): three questions present themselves to

the scientist wishing to use a MCMC-method for a particular problem: (a) how to set

up a Markov chain which converges to a did sample from the posterior, (b) how to assess

whether the length of the Markov chain is sufficient for it to be sufficiently close to its

stationary distribution, and (c) how to assess whether the sample size (after convergence)

is sufficient for the Monte Carlo estimates to be sufficiently precise. However, MCMC

approach in IRT models still is standard, see for example Curtis (2010); Stone and Zhu

(2015).

As indicated by Levy (2009) it is readily acknowledged that MCMC is difficult, both

computationally in terms of necessary resources and conceptually in terms of constructing

the chains, making relevant choices, and understanding the results. Additionally it may

be extremely slow when the number of examinees and / or items increases substantially.

In Large Scale Assessments like the Programme for International Student Assess-

ment (PISA), Trends in International Mathematics and Science Study (TIMSS) or The

Progress in International Reading Literacy Study (PIRLS) a large number of students

are evaluated. To obtain student competence estimates requires IRT models, a famous

one is the simple logistic or Rasch model (Rasch, 1960). For this type of data or genetic

data where large number of genes are available, MCMC methods are much slower then

Maximum Likelihood and then they are not considered to estimation.

On the other hand, an approximate method named integrated nested Laplace (INLA)

was developed by Rue et al. (2009); Martino and Rue (2010) to deterministically approx-

imate the posterior marginal distribution of interest under the family of latent Gaussian
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models. A major advantage of INLA, following the authors and considering several im-

plemented models (see by example Grilli et al. (2015)), is that computational time is

short and approximations are precise;

However, to the best of our knowledge, this approach has not been used yet to one-

parameter IRT models.

In this paper, we present a new Bayesian estimation for one-parameter IRT models

considering the INLA method. The paper is organized as follows. In Section 2, the

one-parameter IRT model is described. In Section 3, Bayesian estimation using MCMC

methods and INLA are presented to the IRT model. We continue in Section 3.3 present-

ing different Model comparison Criteria for IRT models introducing Widely Applicable

Information Criteria (WAIC) (see for example Gelman et al., 2014). Section 4 presents

two simulation schemes to assess the the correctness of the INLA method when compared

to MCMC and ML methods. In Section 5 the methodology is illustrated considering a

large data set of the Exame Nacional do Ensino Médio (ENEM, in English: High School

National Exam) with 45 items of 29442 examinees of the state of Minas Gerais from

Brazil in the Mathematics exam. We conclude with a final remarks indicating future

works.

2. ONE-PARAMETER ITEM RESPONSE MODEL

We consider that

Yij|θi, bj ∼ Bernoulli ( pij), i = 1, . . . , n, j = 1, . . . , I. (1)

where Yij are the dichotomous response corresponding to the i-th individual to the j-th

item, and (θi, bj) is the vector of latent variables of interest with bj, a item parameter that

correspond to item difficulty and θi, the value corresponding to latent trait associated to
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examinees i, describing its personal ability in answering the test with I items and pij is

the probability of correct answer for examinee i in the item j. Further, let

pij = P (Yij = 1 | mij) = F (mij), (2)

with mij = θi − bj, a linear function of θi, i = 1, . . . , n and j = 1, . . . , I. The function

F (.) is typically known as the item response function or item characteristic curve and

satisfies the property of latent monotonicity (strictly nondecreasing function of θi) and

typically is the same for all i and j with support on the whole real line. Further, bj and

θi also can take any real values.

IRT models typically satisfies the conditional independence property, that is, for exam-

inee i, the responses Yij corresponding to items j = 1, . . . , I, are conditionally independent

given the values of latent trait θi, i = 1, . . . , n. Further, it is considered independence

between responses from different examinees. Under the above assumptions, the joint dis-

tributions of Y = (Y ′1, . . . ,Y
′
n)′ with Y i = (Yi1, . . . , YiI)

′ given the vector of latent vari-

ables (θ, b) with latent trait θ = (θ1, . . . , θn)′ and difficulty parameters b = (b1, . . . , bI)
′

can be written as

p(Y = y|θ, b) =
n∏
i=i

I∏
j=1

F (mij)
yij(1− F (mij))

1−yij . (3)

The first one-parameter IRT model was formally introduced by Lord (1952) and con-

siders F (.) = Φ(.), i = 1, . . . , n, and j = 1, . . . , I, with Φ(.) the cumulative function (cdf)

of the standard normal distribution. The model is known as the normal ogive model.

Rasch (1960) considered F (·) = Lo(·) with Lo(mij) = emij/(1 + emij), denoted the cdf

of the standard logistic distribution and thus, this model is known as the one-parameter

logistic model or Rasch model (Fischer, 2007). Also, by considering F (.) = RG(.) the
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cdf of the standard reversal Gumbel distribution with RG(mij) = 1 − exp[− exp(mij)]

another one-parameter model can be defined. Note that F (.)−1 is a link function and

then Φ(.)−1, log(pij/(1 − pij)) and log(− log(1 − pij)) are respectively the probit, logit

and loglog links.

The dichotomous item response model presented in (1) - (3) involves a total of n +

I unknown parameters being thus overparameterized. On the other hand, for a fixed

number of items, item parameters are known as structural parameters and the latent

trait are known as incidental parameters, because they increase with n, the sample size,

and because the analysis is generally focused on the item parameters. The model is

also unidentifiable, since it is preserved under a special class of transformations of the

parameters (see Albert, 1992) so that maximum likelihood estimates may not be unique.

One way of contouring such difficulties is to impose restrictions on the item parameters

as considered, for example, in Bock and Aitkin (1981). Another way follows by specifying

a distribution for the latent trait. Lord and Novick (1968), Albert (1992) consider

θi
iid∼ N(µ, σ2), i = 1, . . . , n. (4)

This assumption establishes that it is believed that the latent trait are well behaved

and that are a random sample from this distribution. We can consider in this paper that

µ = 0 and σ2 = 1. In more general situations, the prior structure needs to be enlarged

so that hyper prior information can also be considered for σ2 parameters.

We find it more appropriate using the notation probit-normal and logit-normal models,

respectively and then the loglog-normal models complete the list of one-parameter IRT

models analyzed in this paper.
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3. BAYESIAN ESTIMATION

We start considering the following general class of independent prior distributions:

π(θ, b) =
n∏
i=1

g1(θi)
I∏
j=1

g2(bj),

where g1 and g2 are specified probability density functions for θi and bj, respectively,

i = 1, . . . , n and j = 1, . . . , I. Following Rupp et al. (2004) and Sahu (2002), we take the

normal distribution as common prior for bj, that is bj ∼ N(µb, σ
2
b ) for g2 and to g1 we

consider the specification in (4). The vector of hyperparameters of the one parameter

IRT model is Ω = (µ, σ2, µb, σ
2
b ).

Albert and Ghosh (2000) mention that the choice of a proper prior distribution on

the latent trait resolves particular identification problems, and, further, informative prior

distributions placed for bj can be used to reflect the prior belief that the values of the

item parameters are not extreme (in the frontier of the parametric space). In general

is assumed µb = 0. In the common situation where little prior information is available

about the difficulty parameters, one can chose σ2
b to be a large value. This choice will

have a modest effect on the posterior distribution for non extreme data, and will result

in a proper posterior distribution when extreme data (where students are observed to

get correct or incorrect answers to every item) is observed (Albert and Ghosh, 2000),

also, Sahu (2002) states that larger values of the variance led to unstable estimates. This

priors are denominated as vague priors in the literature. Another situation, is to consider

a hyper prior for σ2
b , thus, Swaminathan and Gifford (1982) use IG(m, n), the inverted

gamma distribution with (known) hyperparameters m and n.

Let Dobs = Y , the observed data. Hence, the likelihood function for the One-
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parameter Dichotomous model is given by

L(θ, b|Dobs) =
n∏
i=1

I∏
j=1

F (mij)
yij(1− F (mij))

1−yij , (5)

and consequently the likelihood function and prior specification, a joint posterior distri-

bution is given by:

f(θ, b|Dobs) ∝ L(θ, b|Dobs)× π(θ, b). (6)

3.1 MCMC Estimation

As the joint posterior distributions above are complex to be dealt with, note that all full

conditional distributions are non-standard. Hence straightforward implementation of the

Gibbs sampler using standard sampling distributions is not possible. However, all the full

conditional distributions for the probit-normal model are log-concave (log of the density

is concave) according to (Sahu, 2002). Exact sampling from one dimensional log-concave

distributions can be performed using rejection sampling, even when the normalizing con-

stants are unknown (Gilks and Wild, 1992). These authors also develop an adaptive

rejection sampling (ARS) scheme. ARS dynamically constructs two envelopes (one lower

and one upper) for the distribution to be sampled from using successive evaluations of

the density at the rejected points. The algorithm stops when one proposed point has

been accepted.

An alternative MCMC method to estimate the One-parameter Dichotomous model

was initially proposed by Albert (1992) to the probit-nomal model and extended to the

logit-normal model by Maris and Maris (2002). Introducing a auxiliary latent variable

yields a model equivalent to the One-parameter Dichotomous model. Then, a “aug-

mented” likelihood function is obtained and Data Augmentation Gibbs Sampling (DAGS)

or Data Augmented Transformation Gibbs Sampling (DATGS) MCMC methods can be
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proposed by probit-normal and logit-normal models respectively. Routines in R and

Matlab to both algorithm are available in the Web and also can be easily formulated in

WinBUGS or OpeBUGS (see for example Curtis, 2010) and SAS (see for example Stone

and Zhu, 2015) and then MCMC methods are standard procedures to fit IRT model

under a Bayesian approach. However it is known that MCMC methods are slow when

the number of individuals and/or the number of items are increased dramatically making

unfeasible to fit IRT models to large data set (see for example Levy, 2009). In the next

section we present an alternative for this.

3.2 INLA Estimation

Rue et al. (2009) introduced the INLA approach to perform Bayesian analysis for a broad

class of models where the response yij assumes independence conditional on some latent

field θ, b and a vector of hyperparameters Ω, these models are called latent Gaussian

models. As indicated by Rue et al. (2009), latent Gaussian models are a structured

additive regression models where the observation (or response) variable is assumed to

belong to an exponential family distribution, and the conditional mean µij is linked to

a structured additive predictor ηi through a link function g(.), so that g(µij) = ηij.

As known, see by example Fischer (2007), Rasch model, conditionally belong to the

exponential family, in consequence are latent Gaussian models. This is also the case of

the one-parameter IRT models when we use the probit and loglog as link function.

In order to propose the INLA estimation method for the one-parameter IRT model

we formulate this model as a Bayesian hierarchical model with a latent Gaussian random

field θ, b. Therefore, this characteristics are clearly suitable for the use of the INLA

framework. For the dichotomous IRT model, the first stage is the observational model

π(y|θ, b), where y denotes the binary response and then the vector θ, b corresponds to

the latent Gaussian Markov Random Field (GMRF) which is responsible for all latent
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components of the model, π(θ, b|Ω) with Ω the hyper parameters defined in Section 3.

The GMRF is typically controlled by a few hyperparameters Ω, that can be held fixed

or not as discussed above.

To estimate the item difficulty bj and the latent trait i (θi) we are interested in the

posterior marginal of the elements of (θi, bj) give Ω (i.e the latent effects and hyperpa-

rameters) give by

π(θi, bj|y) =

∫
π(θi, bj|y,Ω)π(Ω|y)dΩ, (7)

π(Ωk|y) =

∫
π(Ω|y)dΩ−k, (8)

where Ωk is the kth entry of vector Ω and Ω−k is the vector Ω with the kth entry removed.

In order to estimate the parameters of the model, we first approximates π(Ω|y), using

the a Gaussian approximation to the full conditional distribution of θ, b by a multivariate

Gaussian density π̃G(θ, b|y,Ω) (for details see Rue and Held, 2005) evaluated at its

mode (θ, b)?(Ω). Then the posterior density of Ω is approximated by using the Laplace

approximation (Tierney and Kadane, 1986)

π̃(Ω|y) ∝ π(θ, b,y,Ω)

π̃G(θ, b|y,Ω)

∣∣∣∣∣
θ,b=(θ,b)?(Ω)

. (9)

In a second step is to compute the Laplace approximation of π(θi, bj|y,Ω) for selected

values of Ω, which will be used to perform a numerical integration to obtain the posterior

marginals of θi, bj presented in (7). The density π(θi, bj|y,Ω) is approximated by

π̃LA(θi, bj|y,Ω) ∝ π(θ, b,y,Ω)

π̃G((θ, b)−ij|θi, bj,y,Ω)

∣∣∣∣∣
(θ,b)−ij=(θ,b)?−ij(θi,bj ,Ω)

, (10)

where (θ, b)−ij denotes the vector θ, b without the (i, j)th component, π̃G((θ, b)−ij|θi, bj,y,Ω)
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is the Gaussian approximation of π((θ, b)−ij|θi, bj,y,θ), treating θi, bj as observed and

(θ, b)?−ij(θi, bj,Ω) is the mode of π((θ, b)−ij|θi, bj,y,Ω).

The approximation π̃LA(θi, bj|y,Ω) in (10) can be quite expensive, since is necessary

to recompute π̃G((θ, b)−ij|θi, bj,y,Ω) for all θi, bj and Ω. Rue et al. (2009) proposes two

alternatives to obtain these full conditionals in a cheaper way. We focus our analysis in

the simplified Laplace approximation defined as the series expansion of π̃LA(θi, bj|y,Ω)

(for details see Rue et al., 2009).

Finally, the full posteriors approximations obtained previously are combined and the

marginal posterior densities of mij and θk are obtained by numerically integrating out

the irrelevant terms. Therefore, the marginal approximation of the latent variables using

(9) and (10) can be obtained by

π(θi, bj|y) =

∫
π(θi, bj|y,Ω)π(Ω|y)dΩ ≈

∑
l

π̃LA(θi, bj|y,Ωl)π̃(Ωl|y, )∆l,

which is evaluated using a finite sum on a set Ωl of grid points, with area weights l for

l = 1, 2, . . . , L. Rue et al. (2009) argue that because the points Ωl are selected in a

regular grid, it is feasible to take all the area weights l to be equal. In a similar way, the

posterior marginal of π(Ωk|y) is obtained.

Hierarchical extensions of the Rasch model as the proposed in Maier (2001) are im-

mediate in INLA approximation considering adequate specification of the vector of hy-

perparameters Ω in the model.

3.3 Models comparison Criteria

In order to compare alternative one-parameter IRT models, we make use of some model

comparison criteria discussed in Gelman et al. (2013). Specifically, we consider the De-

viance Information Criterion (DIC) which is defined by DIC = D(θ) + ρDIC = 2D(θ) −
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D(θ̃), where the term ρDIC is a measure of the effective number of parameters in the

model and it is defined as ρDIC = D(θ) − D(θ̃), with D(θ) is the posterior expectation

of the deviance estimated using the MCMC sample {θ1, . . . ,θM} from the posterior dis-

tribution as D(θ) = −2 1
M

∑M
m=1 log f(y|θm) and D(θ̃) is the deviance evaluated at the

posterior mean of the parameters θ̃ = E[θ|y]. Additionally we consider the Expected

Akaike Information Criterion (EAIC) and the Expected Bayesian Information Criterion

(EBIC) which are calculated penalizing the D(θ) by using 2p and plog n as penalties

function, respectively, where p is the number of parameters in the model and n is the

sample size. For all criteria the smaller values indicate better fit.

In addition we propose to use the Widely Applicable Information Criterion WAIC

which is based in the log pointwise posterior predictive density (lppd) given by lppd =∑n
i=1

∑I
j=1 log

(
1
M

∑M
m=1 L(θm, bm|yij)

)
, and then, to adjust for overfitting, add a term

to correct for effective number of parameters

ρWAIC =
∑n

i=1

∑I
j=1 V

M
m=1(logL(θm, bm)|yij), where V M

m=1(a) = 1
M−1

∑M
m=1(am − ā)2.

Finally, as proposed by Gelman et al. (2014), the WAIC is calculated by WAIC =

−2(lppd− ρWAIC).

On the other hand, the conditional predictive ordinate CPO is another common

approach to compare models. The CPOij follow the idea of the leave one out cross

validation, where each value is an indicator of the likelihood value given all the other

observations. Thus, low values of CPOij must correspond to poorly fitted observations.

For the ij-th observation, the CPOij can be written as

CPOij = π
(
yij|y(−ij)

)
=

∫ ∫
L (θ, b|yij) f

(
θ, b|y(−ij)

)
dθdb =

{∫ ∫
f (θ, b|y)

L (θ, b|yij)
dθdb

}−1
,

where y(−ij) is the y without the ij-th observation. Dey et al. (1997) showed that

an harmonic mean approach can be used to do a Monte Carlo approximation of the
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CPOij by using a posterior sample as ĈPOij =

{
1
M

∑M
m=1

1

L(θm,bm|yij)

}−1
. Since the

CPOij is defined for each observation, the log-marginal pseudo likelihood (LPML) given

as LMPL =
∑n

i=1

∑I
j=1 log

(
ĈPOij

)
, is used to summarize the CPOij information and

the larger the value of LMPL is, the better the fit of the model under consideration. For

a revision of these criteria, one may refer to Gelman et al. (2013)

The codes for fitting the one-parameter IRT model using INLA method and to calcu-

late model comparison criteria are available under requirement.

4. SIMULATION STUDY

4.1 Comparison between the INLA and ARS MCMC method

Four different scenarios were created with different sample and item sizes: 1) n = 500,

I = 15; 2) n = 500, I = 30; 3) n = 2000, I = 15; 4) n = 2000, I = 30; and for each

scenario 100 data sets of the Rasch model were generated. In all cases θi
iid∼ N(0, 1) and

bj
iid∼ N(0, 2) is the baseline of our simulation.

To comparison with the INLA method we estimate difficulties and latent trait con-

sidering ARS MCMC method. The R-INLA and the OpenBUGS software in conjunction

with the R library rbugs were considered respectively. To guarantee convergence in the

simulation, each MCMC chain have 25,000 iterations with a burning period of 5,000 it-

erations and thinning of 10 resulting in 2,000 posterior samples. Since we only have one

chain the convergence test was verified using Geweke’s criterion.

To carry out the comparison for Bayesian inference using INLA and MCMC esti-

mation method we used the root mean square error (RMSE), the mean absolute error

(MAE) and the average correlation (Corr) between the estimated and true parameters.

Table 1 presents the summarized results obtained by fitting both methods for 100 simu-

lated data set under the specified scenarios. For parameters b the results showed similar
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performance in terms of the RMSE, MAE and Corr. The same pattern is observed for

parameters θ, the results using INLA methods are very similar to those obtained for

MCMC methods It could be argued that if we allow the MCMC chain to run longer

enough we could improve the fit to become as good as desired. However, it is well known

that for MCMC methods there is a trade-off between precision and waiting time.

[Table 1 about here.]

To confirm the results presented in Table 1 we focus in the simpler scenario, N = 500

and I = 15, where the INLA performs closer to the MCMC analysis. Thus, in Figure 1

we present a boxplot to compare the bias of the estimates of each parameter bj for the

INLA and MCMC for the 100 simulations. We can see that INLA and MCMC bias are

very similar for parameters bj, j = 1, . . . , I, for the 100 simulations. Reassuring that

INLA performs estimation of the parameters as well as MCMC.

[Figure 1 about here.]

On the other hand, the mean computational time to run each of the 100 data sets of

each scenario is also presented in Table 1. From Table 1 it is clear that INLA performs

the analysis much faster than the MCMC method. This gain is essential when dealing

with larger data sets. In our biggest scenario (N = 2000 and I = 30) the MCMC chain

took in average about 11 hours to run while INLA provided results in 13 minutes. The

MCMC analysis becomes impracticable when dealing with larger data sets.

4.2 Comparison between the INLA and ML methods

Six different scenarios were created with different sample and item sizes: 1) N = 100, I =

10; 2) N = 100, I = 20; 3) N = 500, I = 10; 4) N = 500, I = 20; 5) N = 1000, I = 10; 3)

N = 1000, I = 20; and for each scenario 50 data sets of the Rasch model were generated.

In all cases θi
iid∼ N(0, 1) and bj

iid∼ U(−2, 2) is the baseline of our simulation.
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To comparison with the INLA method we estimate difficulties and latent trait con-

sidering traditional Maximum Likelihood estimation approachs. Specifically we consider:

(a) MLM estimation + MAP (we adopt marginal maximum likelihood (MML) method to

the estimation of difficulties and maximum a posteriori (MAP) to estimation of abilities.

To details see (Tong and Coombes, 2012) and Rizopoulos (2006)) (b) CML (we adopt

conditional maximum likelihood (CML) methods to the estimation of difficulties and

abilities, see Mair and Hatzinger (2007)) (c) RMLM + MAP (we adopt Restricted Maximum

Likelihood (RML) method to the estimation of difficulties and MAP to the estimation of

abilities. For details see De Boeck et al. (2011).

To carry out the comparison between the different methods considered we used the

root mean square error (RMSE), the average correlation (Corr) between the estimated

parameters and the true one and computational time. Table 2 presents the summarized

results obtained by fitting all methods for 50 simulated data set under the specified

scenarios.

[Table 2 about here.]

For both parameters b and θ we found that MMLM + MAP and INLA methods presents

the best perfomance and very similar results in terms of the RMSE and Corr among

then. In addition it is possible to see that INLA method is slightly slower than MMLM+MAP

and CLM methods but slightly faster than the RMLM + MAP method. Although it could be

argued that R-INLA is slower it performs full Bayesian inference and provide marginal

posterior distributions for all parameters.

5. ANALYSIS OF THE ENEM MATHEMATICS EXAM

In order to evaluate the performance of the proposed approach with a large data set we

analyze data set of the ENEM. The ENEM is the most important exam non-mandatory,
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standardized Brazilian national exam, which evaluates high school students in Brazil

as a standard university entrance qualification test. For illustration of the approach

development in this paper we consider only a version of a subtest. Items 136 (1 here)

to 180 (45 here) of the sub test Mathematics and its Technologies correspondent to the

Mathematics Area of the blue version are considered. The total time to the subtest

considering items 91 to 180 was 5 hours with 30 minutes. The items and the answer

correct are available in http://portal.inep.gov.br/web/enem/edicoes-anteriores/

provas-e-gabaritos.

Official organization responsible for the ENEM, Instituto Nacional de Estudos e

Pesquisas Educacionais Ańısio Teixeira (INEP) indicate that in the first step of the anal-

ysis is performed a review of the behavior of all the items, the known parameters of the

items are reevaluated and estimates of the parameters in which items were not known

yet are performed. This step is named of calibration. Only after the calibration phase is

consolidated, starts then, the phase of estimation of the proficiency of the participants.

Both procedures, item analysis and calculation of abilities in ENEM are based on IRT.

Specifically the three-parameter logistic model is considered and the method used for cal-

culation of abilities is called Expected A Posteriori (EAP). In this method, the expected

a posteriori estimate of ability for response pattern is obtained using Hermite-Gauss

quadrature approximation. For details see Baker and Kim (2004).

In order to illustrate the methodology we consider only candidates in Minas Gerais

state. A total of 29442 individuals and 45 items corresponding to the Mathematics Area

is the data set considered.

To evaluate alternative one-parameter IRT models, we consider logit-normal, probit-

normal and loglog-normal models. Table 3 shows the fit comparison using several model

comparison criteria discussed in section 4.2. We found, clearly, that the logit-normal or

15



Rasch model has a best fit for the ENEM data considering all criteria.

[Table 3 about here.]

This results is expected since that ENEM Test is based in the three-parameter model

considering also the logit link, and then rasch model is a particular model.

Considering the Rasch model we show a Boxplot of the estimates of parameter b for

the items of ENEM Mathematics Exam in Figure 2 using the ENEM scale (500 + 100b̂j).

With the ENEM scale is possible to classify the items in four groups. Then, we found

that 25 of the 45 items of intermediate difficulty (ENEM scores between 400 and 600).

We also identified 18 difficult items (ENEM scores between 600 and 700) and one with

high difficulty (item 28 with ENEM scores between 600 and 700). Also we found one

item (item 1) being the easiest in the Test.

[Figure 2 about here.]

In Table 4 we show statistics of the posterior distribution of some items picked from

each group: very difficult (item 28), difficult (item 23), intermediate (item 45), easy (item

1). We show the posterior mean and HPD interval to the correspondent item. Also, we

show the probability of correct response to a student with trait=500. Note that when the

item is easy, then the probability of correct response is 0.80 but when the item is very

difficult then the probability of correct response is 0.08.

[Table 4 about here.]

In addition we show in the Figure 3 the correspondent Item Characteristic Curves of

the items choose considering the usual scale. Less difficult items are located on the left

of the scale, most difficult items on the right.

[Figure 3 about here.]
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Finally, since that marginal posterior distributions for all parameters are available,

other summary measures can be obtained to the difficulties of the itens and trait latent

variables of the students.

6. FINAL REMARKS

In this paper was presented how estimate the parameters of the IRT models INLA method

(Rue et al., 2009), as an alternative method to commonly MCMC and ML methods in

the literature. One-parameter IRT models with logit (Rasch model), probit, and loglog

links were easily implemented.

In a first simulation study we compare the obtained results from both methodologies

INLA and MCMC showing that both methods provide very similar estimates of the pos-

terior distribution of the parameters of the models studied. However, the computational

time of INLA method is much smaller than the traditional MCMC using for example

OpenBUGS. For this reason, we advocate that INLA can be used to Bayesian estima-

tion in IRT modeling for large data sets in a reasonable time as presented in Section 5

with a ENEM application. In addition, in a second simulation study we show that the

INLA method performed similarly or more favorably than some of the ML methods in

the literature briging additional information since we have the posterior distribution of

the parameters.

Further extensions for two and three parameters IRT models using INLA methodology

are under investigation and are not so trivial. This theme is investigated in a different

manuscript and it is out of the scope of the current that aims to present how to perform

in a simple manner large data set fitting of one parameter IRT models.
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Table 1: Comparison between INLA and MCMC methods to the performance on the
recovery of the b’s and θ’s parameters and computational time in the Rasch model to
different sample (n) and item sizes (I). Mean absolute error(MAE), root mean square
error (RMSE) and correlation (Corr) based on 100 runs of the simulation.

n I b difficulties time (min)

RMSE MAE Corr

INLA MCMC INLA MCMC INLA MCMC INLA MCMC

500 15 0.418 0.421 1.291 1.298 0.997 0.997 0.39 48.32
30 0.628 0.630 2.822 2.852 0.997 0.997 2.00 85.31

2000 15 0.250 0.250 0.777 0.780 0.999 0.999 3.10 277.14
30 0.353 0.354 1.570 1.570 0.999 0.999 13.30 667.15

n I θ trait persons

RMSE MAE Corr
INLA MCMC INLA MCMC INLA MCMC

500 15 11.821 11.810 209.829 209.630 0.836 0.836
30 9.130 9.109 162.383 162.053 0.907 0.907

2000 15 24.110 24.046 856.541 855.254 0.844 0.844
30 18.580 18.543 660.129 659.695 0.911 0.911
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Table 2: Comparison between INLA and Maximum Likelihood methods to the perfor-
mance on the recovery of the b’s and θ’s parameters in the Rasch model to different
sample (n) and item sizes (I). Root mean square error (RMSE), correlation (Corr) and
computational time (time) based on 50 runs of the simulation.

n I MML+MAP

RMSE b Corr b RMSE θ Corr θ time

100 10 0.257 0.982 0.615 0.791 0.177
20 0.264 0.979 0.476 0.880 0.317

500 10 0.102 0.996 0.606 0.793 0.520
20 0.113 0.996 0.482 0.879 0.987

1000 10 0.083 0.998 0.615 0.788 0.678
20 0.082 0.998 0.479 0.879 2.142

n I CML
RMSE b Corr b RMSE θ Corr θ time

100 10 0.378 0.982 0.917 0.787 0.192
20 0.310 0.979 0.621 0.878 0.627

500 10 0.305 0.996 0.916 0.791 0.229
20 0.231 0.996 0.630 0.876 0.547

1000 10 0.340 0.998 0.928 0.784 0.264
20 0.168 0.998 0.613 0.875 0.721

n I RML + MAP

RMSE b Corr b RMSE θ Corr θ time

100 10 0.263 0.982 0.744 0.791 5.173
20 0.264 0.979 0.580 0.879 23.352

500 10 0.102 0.996 0.758 0.793 34.081
20 0.112 0.996 0.598 0.879 264.233

1000 10 0.084 0.998 0.778 0.787 75.669
20 0.082 0.998 0.563 0.878 363.511

n I INLA

RMSE b Corr b RMSE θ Corr θ time

100 10 0.241 0.983 0.614 0.791 4.713
20 0.249 0.979 0.475 0.880 3.105

500 10 0.101 0.996 0.606 0.793 7.172
20 0.112 0.996 0.482 0.879 13.133

1000 10 0.082 0.998 0.615 0.788 15.524
20 0.082 0.998 0.479 0.879 38.940
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Table 3: Model comparison Criteria to alternative one-parameter IRT models using dif-
ferent links to ENEM Mathematics Exam.

Criteria one-parameter IRT models

Rasch Probit-Normal Loglog-Normal

Dbar 1474076.7 1476924.1 1487259.5
Dhat 1448724.7 1448984.9 1459079.1
DIC 1499428.6 1504863.3 1515440.0

EAIC 1533050.7 1535898.1 1546233.5
EBIC 1889750.2 1892597.6 1902933.1
WAIC 1500754.9 1506682.3 1517661.7

-2LPML 1500740.0 1506709.2 1517694.1

Table 4: Summary of posterior distribution to some items of the ENEM Mathematics
Exam.

Item Group Item mean sd Interval HPD Prob of correct response
to ENEM score = 500

very difficult 28 740.7 2.1 736.6 – 744.6 0.08
difficult 23 645.2 1.6 642.1 – 648.3 0.19

intermediate 45 503.7 1.4 501.0 – 506.3 0.49
easy 1 361.2 1.6 358.2 – 364.3 0.80
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Figure 1: Boxplot of the bias of the estimates of b’s parameters in the Rasch model for
both INLA (light grey) and MCMC (white) methods based on 100 runs of the simulation
with n = 500 examinees and I = 15 items.
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Figure 2: Boxplot of the estimates of parameter b’s for 45 items of the ENEM Mathematics
Exam.
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Figure 3: Item characteristic curves to some item choose of the ENEM Mathematics
Exam: item 28 (solid line) is very difficult, item 23 (dashed line) is difficult, item 45
(dotted line) is intermediate, item 1 (twodash line) easy.
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