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Abstract

This manuscript deals with an analysis of the municipal human development index as a function

of the Municipal Human Poverty Index. We propose a regression model where the response follow

a mixture of simplex distribution. Estimation is performed by a Bayesian approach making use of

Gibbs sampling algorithm.

Key words: Simplex distribution, Bayesian Analysis, Gibbs sampling, human development index,

1 Introduction

The Human Development Index (HDI) is a summary measure of long-term progress in three

basic dimensions of human development that takes into account education, income and longevity

indexes. The HDI is the geometric mean of normalized indexes for each of the three dimensions of

human development.

The analysis of the MHDI data set as a function of the Municipal Human Poverty Index

(MHPI) is presented here where the data is modeled by a mixture of two simplex distribution. The

MHPI is a proportion of individuals in each city with household income equal or less than half minimum

wage (R$ 255,00), August 2010 (Fundação Instituto Brasileiro de Geografia e Estat́ıstica, 2014). We

consider MIDH and MHPI of the cities of Northeast region and São Paulo state in Brazil. In this

region are the states of Alagoas, Bahia, Ceará, Maranhão, Paráıba, Pernambuco, Piaúı, Rio Grande

do Norte and Sergipe. There are 1794 cities in the Northeastern region and 645 in São Paulo state

leading to a sample of size n = 2439.

The remainder of the manuscript is organized as follows: In Section 2 we present the Mixture

of simplex regression model. The Section 3 is dedicate to Models specification and some criteria of

comparison. Finally, the results are drawn in Section 4.
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2 Model

Let (xi,yi) observations where yi represents the observed value of random variable Yi taken

value in (0, 1) and xi =
(
x
(M)T
i ,x

(D)T
i

)T
a vector of explanatory variables with dimensions q and d,

respectively, both with 1 in the first component. In addition, let’s assume that Yi is independent with

density

fi(yi|xi,β, δ,ω) =
k∑
j=1

ωjS(yi|xi,βj , δj) (1)

where

S(yi|xi,βj , δj) =
(
2πσ2

ij (yi(1− yi))3
)−1/2

exp

{
−
(

1

2σ2
ij

)(
(yi − µij)

2

yi(1− yi)µ2
ij(1− µij)2

)}
I(0,1)(yi)

is the jth component density of the mixture model given by (1), µij and σij is the mean and dispersion

parameters, respectively, with

h1(µij) = x
(M)T
i βj and h2(σij) = x

(D)T
i δj (2)

(3)

where h1 and h2 are link functions to mean and dispersion and the components of the vectors

β = (β1, ...,βk) and δ = (δ1, ..., δk) are q and d-dimensional vectors of unknown regression parameters.

Since the component density of the mixture model in (1) is a pdf of simplex distribution the model

specified relates to a mixture of simplex regression model with k components were ω = (ω1, .., ωk) are

the weight of the mixture model.

2.1 Bayesian inference

Let’s consider a unobserved random vector Zi = (Zi1, ..., Zik) such that Zij = 1 if the ith

observation belongs to the jth mixture component and Zij = 0 otherwise, i = 1, . . . , n. The augmented

data likelihood to (y,Z) can be written as

L(β, δ,ω|y,Z) =

n∏
i=1

k∏
j=1

[
ωjS(yi|xi,βj , δj)

]Zij (4)

where Z = (Z1, ...Zn).

Assuming that yi is assigned to component j, Zij = 1, the likelihood to β and δ, given Z,

can be write as

L(β, δ|x,y,Z, k) =

n∏
i=1

k∏
j=1

[
S(yi|xi,βj , δj)

]Zij (5)

=

k∏
j=1

exp

− ∑
i∈{i:Zij=1}

(
(yi − µij)

2

2σ2
ijyi(1− yi)µ2

ij(1− µij)2

) ∏
i∈{i:Zij=1}

(
2πσ2

ij (yi(1− yi))3
)−1/2

,(6)

(7)
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each of these k factors can be combined with a prior distribution leading to the its full conditional

posterior distribution. We specify proper prior distributions as

βlj ∼ Normal(0, 100), for l = 0, .., q − 1 and j = 1, ..., k,

δlj ∼ Normal(0, 100), for l = 0, .., d− 1 and j = 1, ..., k,

ω ∼ Dirichlet(ν1, ..., νk) (8)

(9)

In order to simulate sample from the joint posterior distribution of (β, δ,ω, Z) we use the

Markov chain Monte Carlo approach as described in Paz et al. (2014).

2.2 Models specification and some criteria of comparison

We consider three mixture of simplex regression model to model the MHDI data. For the

first model (M1) we consider link function log
(

µij
1−µij

)
= xTi βj and log(σij) = δj , j = 1, 2 where

βj = (β0j , β1j) and δj = (δ0j , δ1j). In the second model (M2), link functions are considered to mean

and dispersion as log
(

µij
1−µij

)
= xTi βj and log(σij) = xTi δj , j = 1, 2. Finally, in the third model (M3)

we adopt link function only to the dispersion parameters as log(σij) = xTi δj , j = 1, 2. We assume

xTi a vector of explanatory variables with 1 in the first component and the ith value of MHPI in the

second component, i = 1, ..., 2439. We shall denote by M0 the model without covariates.

The models (M0,M1,M2 and M3) was compered by estimated marginal likelihood and de-

viance information as expected Akaike information criteria (EAIC), expected Bayesian information

criteria (EBIC) and deviance information criteria (DIC) introduced by Spiegelhalter et al. (2002).

The MCMC output was used to approximate these criteria. The estimate of marginal likelihood was

obtained based on the identity

m(y) =

∏n
i=1 f(yi|xi,β, δ,ω,M)p(β, δ,ω|M)

p(β, δ,ω|y,x,M)
(10)

where f(yi|xi,β, δ,ω,M) is the density of ith observation to current model, M, p(β, δ,ω|M) is the

prior to the parameters and p(β, δ,ω|y,x,M) is the density of posterior distribution. The approximate

p(β, δ,ω|y,x,M) is obtained as in Paz et al. (2014) where is used an approach introduced by Chib

& Jeliazkov (2001) to approximate the marginal densities in the mixture models when its do not have

know form. The estimate of DIC is obtained as

DIC = 2D̄ + PD (11)

where PD = D̄ − D̂ with

D̄ =

G∑
g=1

(
−2

n∑
i=1

log
(
fi(yi|xi,β(g), δ(g),ω(g))

))
(12)
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and

D̂ = −2
n∑
i=1

log
(
fi(yi|xi, β̄, δ̄, ω̄)

)
(13)

where the notation θ̄ main the posterior mean of the parameter θ and θ(g) represent the gth estimate

of the parameter θ, all the estimates are obtained from MCMC output. The EAIC and EBIC are

estimated by

EAIC = D̄ + 2× P

EBIC = D̄ + 10× log n

(14)

where P is the number of model parameters.

3 Results

From specified initial values, we first iterate the sampling procedure to burn-in phase of 5000

interactions, already considered thinning of 10 iterations, and the 5000 remaining were used in the

analysis. The acceptance rate for update moves, in the Metropolis-Hastings step, is kept around 0.3,

this rate was choose based on the convergence of the algorithm.

Figure 1: Scatter plot with marginal histograms of the data.

For the MHDI data set, we observe in Figure 1 that still there are some evidence of hetero-

geneity in the data. Then, we assume, initially, that the data can be model by a mixture of simplex

distribution with two components, that is, we assume k = 2.

Model

Criteria M0 M1 M2 M3

DIC -6521.251 -11122.33 -6537.52 -11146.01

EAIC -6505.701 -11112.94 -6523.045 -11133.90

EBIC -6447.707 -11066.55 -6465.052 -11075.91

Log marginal likelihood 3627.944 5544.9343 3769.03 5553.879

Table 1: Table

Table 1 show the criteria used to compare the four models, including the models without

covariate (M0). In this Table we can observe that the best model, according to these criteria, is the

model M3 with covariate in the mean and dispersion. However, taking into account the parsimonious
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criteria we can observe that the model M1 is more plausible then M3. Then we choose the model M1

as a best model among those compared.

Table 2: Number of observations classified across the models and components.

Model M0 M1

Component 1 2 1 2

M0

1 1703 0 1703 0

2 0 736 622 114

M1

1 1703 622 2325 0

2 0 114 0 114

We build the contingency Table 2 to show the classifications of observations in the model

M0 and M1 and across these models. In addition, the classification of observations can be seen in the

scatterplot presented in Figure 2. In the contingency table and in the scatter plot, we can observe

that the second component, the component with less weight, decrease in number of observations if

the covariates are included in the model. This fact is because more information about the poverty is

included in the model changing the distribution of the weights. The distribution of the weights, or

probability of the mixture, to model M0 and M1 can be seen in the Table 3.

Figure 2: Scatter plot of the classified data.

Finally, table 3 show the posterior mean of the parameters of the modes M0 and M1 and

95% HPD credible intervals (Martin et al., 2011). We can observe that the zero is out of range of the

HPD interval to β11 and β12 given evidence that the covariate is significant in the model M1. The

empirical standard deviation is also presented in Table 3 where we can observe that its values are all

close to zero given evidence that the all of the parameters are well estimated.

Table 3: Posterior mean, credibility intervals and standard empirical deviation of the estimated para-

meters.

Model Parameter β01 β02 β11 β12 δ01 δ02 δ11 δ12 ω1 ω2

M0

Mean 0.585 0.732 - - -2.336 -1.603 - - 0.693 0.307

Lower limit 0.583 0.728 - - -2.418 -1.740 - - 0.672 0.287

Uper limit 0.587 0.735 - - -2.255 -1.471 - - 0.713 0.328

SD 0.001 0.002 - - 0.004 0.014 - - 0.011 0.011

M1

Mean 1.301 1.598 -1.396 -1.827 -3.045 -3.189 - - 0.810 0.190

Lower limit 1.279 1.537 -1.426 -1.924 -3.092 -3.473 - - 0.714 0.123

Uper limit 1.318 1.653 -1.360 -1.734 -2.993 -2.948 - - 0.877 0.286

SD 0.011 0.031 0.019 0.050 0.027 0.132 - - 0.043 0.043
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