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Figure 1: Exemplo de sinal unidimensional (série temporal).

Modelos ARMA para séries temporais (jargão da estatı́stica)
Filtro ARMA para sinais (jargão de processamento de sinais)
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Motivação

Sinal bidimensional (2D)
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(b) Pixels

Figure 2: Exemplo de sinal bidimensional (imagem).

Modelos ARMA espaciais ou bidimensionais
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Motivação

Sinal tridimensional (3D)
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Figure 3: Série temporal de imagens de radar de abertura sintética (SAR).

Modelos ARMA tridimensionais????
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Introduction

Time series of satellite images are important sources for satellite data
interpretation and Earth monitoring [1, 2, 3].

This type of data has been increasingly available with high temporal
and spatial resolutions [1], offering a wide range of Earth observation
(EO) applications, such as:

land-use classification [4, 5],
change detection [6, 7],
filtering [8, 9],
missing information reconstruction [10, 11, 12].
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Introduction

Spatio-temporal satellite data can be mathematically described as a
three-dimensional (3D) array, or a 3D cube.

The technical literature is populated by techniques to handle this type
of data. In general, these works consider:

(i) unidimensional (1D) pixel-based approaches [13, 14, 15, 16, 6],
ignoring the spatial correlation,

(ii) time-by-time spatial techniques [17, 18, 19], ignoring the temporal
correlation.

Some options for modeling these data types: 1D ARMA models
[20, 21] and spatial ARMA models [22, 23, 24, 25, 26].

These models and their statistical inference techniques, including
robust estimation [27, 22, 23], are explored in different image
processing applications.
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Introduction

To the best of our knowledge, a 3D autoregressive (AR) statistical
model, as a generalization of the above-mentioned 1D and 2D models
to the third dimension, is absent in the literature.

Thus, we attempt to fulfill this gap by proposing a parametric 3D
statistical model for multitemporal satellite image interpretation that
considers spatial and time correlations in the same AR framework.

We introduce the proposed 3D-AR dynamical model and discuss
parameter estimation.

The results show that the proposed model can be used for filtering,
gap-filling, anomaly detection, and future prediction in a multitude of
sensors and EO applications.
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Introduction

As remote sensing data usually contain anomalous values (outliers)
[28] (clouds, land contamination, sensor failures), this work introduces
a robust method for the estimation of the 3D-AR model parameters.

Specifically, weighted least square estimators (WLSE) [27] are
considered.

Additionally, this work introduces filtering and prediction methods, as
well as residuals and anomaly detection techniques.

The residual-based control charts [29] can be used to detect
anomalous areas, which in turn may be due to multiple phenomena,
such as deforestation, droughts, fires, clouds, plant phenological
cycles, or even sensor failures.
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The Proposed 3D Model

A multi-temporal geometrically and radiometrically corrected remote
sensing image stack can be defined as a 3D cube Y of size M ×N ×T .

Let the voxel Y [m,n, t ] ∈ Y be a random variable, with (m,n, t) ∈ Z3,
where m = 1, . . . ,M and n = 1, . . . ,N are the spatial dimensions and
t = 1, . . . ,T is the time dimension.

Each voxel of the 3D cube can be written as

Y [m,n, t ] = µ[m,n, t ] + ε[m,n, t ], (1)

where µ[m,n, t ] is the mean of Y [m,n, t ] and ε[m,n, t ] are independent
random variables with E(ε[m,n, t ]) = 0 and Var(ε[m, n, t]) = σ2.

F. M. Bayer, UFSM A 3-D Spatiotemporal Model PIPGES/UFSCar-USP 9 / 44



In order to represent the 3D cube using a statistically treatable model,
we model the mean of each voxel as a function of some parameters,
with the following 3D dynamical general structure:

µ[m,n, t ] = x[m,n, t ]>β +
∑
i,j,k

φ(i,j,k)y [m − i ,n − j , t − k ], (2)

where y [m,n, t ] is an observed value of the random variable Y [m,n, t ]
at [m,n, t ], x[m,n, t ] = (x1[m,n, t ], . . . , xr [m,n, t ])> is a r -dimensional
vector of covariates (non-random input variables), β = (β1, . . . , βr )

> is
the r -dimensional vector of unknown parameters related to covariates,
φ(i,j,k) are the unknown autoregressive (AR) parameters of the model,
and (m − i ,n − j , t − k) belongs to some determined support or
neighborhood of the model N{m,n,t}.

The covariates can be used to model inhomogeneous images, with
different types of land use or seasonality patterns, for example.
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There are several possibilities to consider for the neighborhood
N{m,n,t}, and they have been investigated in technical literature
especially for the two-dimensional (2D) case [30, 31, 22, 25].

Motivated by the physical acquisition of the time series satellite images
and for parsimonious reason, we define the neighbor structure as the
set of past values of t ∈ Z, i.e., the set of images observed until the
current time stamp t . Mathematically, let’s define this neighborhood as
N{m,n,t} =

{
(i , j , k) ∈ Z3 : k < t

}
.

Thus results into 3D-AR structure of order p, called 3D-AR(p), given
by:

µ[m,n, t ] = x[m,n, t ]>β +

p∑
k=1

2k+1∑
j=1

2k+1∑
i=1

φ(i,j,k) (3)

× y [m − (k + 1) + i ,n − (k + 1) + j , t − k ],

with g =
∑p

k=1(2k + 1)2.
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Figure 4: 3D-AR(2) model scheme. The voxels at instant t are written as
linear combination of the hatched voxels at instants t − 1 and t − 2.
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Robust Estimation

Given a 3D data cube of satellite observations, the problem is to
estimate the vector of parameters γ = (β>,φ>)>.

The traditional least square estimator (LSE) could be an option, but it
is highly sensitive to outliers [27].

Outliers can be defined as anomalous values with respect to the
surrounding pixels (2D case) [28] or voxels (3D case).

Remote sensing image stack often contain outliers [32, 28].

In these cases, robust methods [27], such as the weighted least
square estimation (WLSE), can be a good choice to obtain inferences
less sensitive to outliers.
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Robust Estimation

The WLSE γ̂ of the 3D-AR(p) model parameters γ is thus obtained by
equating the derivatives to zero and solving the system.

Using similar results from [27], this solution presents the following
matrix closed form:

γ̂ =
(

Z>WZ
)−1

Z>Wy,

where y = (y [1+ p,1+ p,1+ p], . . . , y [M − p,1+ p,1+ p], y [1+ p,2+
p,1+ p], . . . , y [M − p,2+ p,1+ p], . . . , y [1+ p,N − p,1+ p], . . . , y [M −
p,N − p,1 + p], y [1 + p,1 + p,2 + p], . . . , y [M − p,N − p,T ]),
W = diag (w [1 + p,1 + p,1 + p], . . . ,w [M − p,
1 + p,1 + p],w [1 + p,2 + p,1 + p], . . . ,w [M − p,2 + p,
1 + p], . . . ,w [M − p,N − p,1 + p],w [1 + p,1 + p,2 + p],
. . . ,w [M − p,N − p,T ]).
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Robust Estimation

The estimation procedure could be computationally cumbersome for
big data cubes, being restrictive for applications in platforms with
limited performance.

However, a smaller data cube can be used only for parameter
estimation.

Our simulation results suggest that cubes with dimension about
20× 20× 30 present good estimates.

Even if the parameter estimates are extracted from a smaller cube it is
then possible to apply the filtering, prediction, and anomaly detection
techniques discussed in the following to the whole original 3D cube.
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Filtering and Prediction
The filtered signal is given by the estimated values of µ[m,n, t ], given
by the 3D dynamical structure in (3) evaluated at the WLSE γ̂.
Accordingly:

µ̂[m,n, t ] = x[m,n, t ]>β̂ +

p∑
k=1

2k+1∑
j=1

2k+1∑
i=1

φ̂(i,j,k) (4)

×{y [m − (k + 1) + i ,n − (k + 1) + j , t − k ]}f ,

where

{y [m,n, t ]}f =


µ̂[m,n, t ], if F (m,n, t) < δ
y [m,n, t ], if δ 6 F (m,n, t) 6 1− δ
µ̂[m,n, t ], if F (m,n, t) > 1− δ

. (5)

Note that in (5), when y [·, ·, t ] is an outlier it is not considered for the
estimate of µ[·, ·, t + k ], with k = 1, . . . ,p. In these cases, instead of
using the anomalous values y [m,n, t ], the estimated values µ̂[m,n, t ]
are used.
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Filtering and Prediction
The filtered scheme in (4) presents some problems at the border of the
3D cube.

To avoid these issues, a half padding procedure [33] in the spatial
dimensions is used (Fig 5(a)), as well as back-calculation values for
the first p times (Fig 5(b)).

1 2 3 𝑇 

𝑇 3 4 5 

(a) Half pading spatial convolution

1 2 3 𝑇 

𝑇 1 2 3 

(b) Back-calculation in time

Figure 5: 3D-AR(2) model convolution scheme. The observed 3D cube is
represented to the left and the filtered image to the right.
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Residual Analysis and Anomaly Detection

A residual analysis is used as an assessment criteria for the
goodness-of-fit of the fitted 3D-AR(p) model.

We consider the standardized residual given by

r [m,n, t ] =
y [m,n, t ]− µ̂[m,n, t ]

σ̂
. (6)

If the model is correctly specified, the standardized residuals are
approximately Gaussian distributed with zero mean and unit variance,
i.e., r [m,n, t ] ∼ N(0,1).
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Residual Analysis and Anomaly Detection

The formulation of the 3D-AR(p) model enables anomaly detection by
considering residuals monitoring based on the classical theory of
control charts [29].

Specifically in the framework of this research, the 3D-AR
residual-based control charts may be used to detect anomalous areas
in 3D data cubes:

1 For each residual voxel r [m,n, t ] verify if −3 < r [m,n, t ] < 3.
2 Create a binary cube with value 1 if the residual voxel is outside of

the interval (−3,3) and 0 otherwise.
3 Apply dilation-erosion morphological operations on the binary

cube. (usual image processing operations)
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Simulation Study

In this section we evaluate the performance of the point estimators of
the 3D-AR model parameters through a Monte Carlo simulation.

All implementations and simulations were carried out using the R
language [34].

The synthetic spatio-temporal images were generated as a 3D cube
following the 3D-AR structure given by (1) and (3), where the error
terms ε[m,n, t ] in (1) are simulated from zero mean normal distribution.
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Simulation Study
A 3D-AR(1) with one deterministic covariate was simulated with the
following parameter values: β1 = 0.06, φ1,1,1 = 0.19, φ2,1,1 = 0.07,
φ3,1,1 = 0.21, φ1,2,1 = 0.03, φ2,2,1 = −0.02, φ3,2,1 = 0.02, φ1,3,1 = 0.15,
φ2,3,1 = 0.06, and φ3,3,1 = 0.17.

Two dispersion parameter values are considered, namely: σ = 0.24
and σ = 1.

The parameter values are based on the fitted 3D-AR(1) model for the
actual NDVI times series in the following.

To mimic a seasonality pattern in the signal, the covariate are
considered as x1[·, ·, t ] = cos(2πt/12), with t = 1, . . . ,T .

The dimensions of the 3D cubes were set to 20× 20× T , with
T ∈ {10,20,30}.

We set δ = 0.01 for weights determination, which proved a suitable
choice based on previews experiments and simulations.
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Simulation Study

In order to evaluate the LSE and its robust version WLSE, the mean,
bias, percentage relative bias (RB%), and mean square error (MSE) of
the estimators were computed, based on 500 replications of the 3D
signal.

For this evaluation we considered two approaches: 3D signal
generated with outliers and without outliers.

Specifically, to include outliers, we added the value four in 5% of the
voxels in randomized positions.

The results with and without outliers are shown in two tables. (omitted
in this presentation)

Results: We can note that, in general, the WLSE present smaller MSE
values than LSE.
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Simulation Study
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Figure 6: Sensitivity results for two different variance scenarios.

The visual results show that the WLSE is less sensitive to outliers than
LSE for all outlier values in all cases.
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Simulation Study
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Multitemporal NDVI Data Interpretation

In order to show the applicability of the proposal for modeling,
predicting, and detecting anomalies in 3D remote sensing data cubes,
the 3D-AR model will be applied to a spatio-temporal NDVI dataset.

The multitemporal data used in this work is composed by 33 100× 100
NDVI images observed between February 2018 and June 2019 over
the Paraı́ba State, Brazil.

The NDVI data for this location are composed over approximately 15
days periods with 250 meters of spatial resolution.

These NDVI images are from NASA Earth Observing System (EOS),
and they are part of moderate resolution imaging spectroradiometer
(MODIS) collection.
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Multitemporal NDVI Data Interpretation

Figure 7: Aerial view of considered area.
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Multitemporal NDVI Data Interpretation

(a) Aug 2018 (b) Nov 2018 (c) Feb 2019 (d) May 2019

Figure 8: Optical Landsat-8 (RGB; 432) image shows the study area in
different periods of the year.

Figure 9: Quarterly NDVI observation images.
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Multitemporal NDVI Data Interpretation

For parameter estimation purpose only, we selected a smaller cube
with 40 < m < 60, 40 < n < 60, and 1 < t < 33.

In addition, a square of synthetic outliers (synthetic anomalous
observations) was added to the signal.

We arbitrary consider this inclusion at time t = 14 in the pixels with
45 < m < 55 and 45 < n < 55.

We replaced the observed values of these voxels by −0.5. This
negative value can represent, for example, a thick cloud.
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Multitemporal NDVI Data Interpretation

This synthetic inclusion has three main aims, namely:

(i) to evaluate the performance of the robust estimation procedure in
the presence of atypical values,

(ii) to check the filtering performances on a real data set with some
exogenous intervention,

(iii) to verify the performance of the anomaly detection technique.
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Multitemporal NDVI Data Interpretation

To account for seasonality along the determined period, we considered
the covariate x1[·, ·, t ] = cos(2π(t + 18)/24) that consists of 24
biweekly observations for each year.

The fitted 3D-AR(1) model has the following estimated parameter
values: σ̂ = 0.2442, β̂1 = 0.0570, φ̂(1,1,1) = 0.1913, φ̂(2,1,1) = 0.0734,
φ̂(3,1,1) = 0.2126, φ̂(1,2,1) = 0.0295, φ̂(2,2,1) = −0.0250,
φ̂(3,2,1) = 0.0201, φ̂(1,3,1) = 0.1483, φ̂(2,3,1) = 0.0642, and
φ̂(3,3,1) = 0.1710.

Figure 10 shows that the residuals are normally distributed around
zero and most of them are in the interval (−3,3).
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Multitemporal NDVI Data Interpretation
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Figure 10: Histogram of residuals.
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Multitemporal NDVI Data Interpretation

The filtered images show that the model is able to capture the
main patterns of the observed signal, smoothing variability and
gap-filling the outliers in the squared region.

The proposed residual-based anomaly detection technique is
effective in detecting anomalies in multitemporal data.

After morphological operations, only the included synthetic gap is
detected.
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Multitemporal NDVI Data Interpretation

For comparison purposes, we also fitted unidimensional first order
autoregressive (AR(1)) models pixel by pixel.

This approach was suggested by [6] for prediction and change
detection applications in multitemporal SAR images. We used the R
package forecast [35] to fit the AR(1) model.

Table 1: Comparison measures for 3D-AR and unidimensional AR models
fitted to NDVI data (best figures in bold)

Model r MAPE time (sec)
3D-AR (proposed) 0.57 0.54 41.23
AR (pixel by pixel) 0.56 0.60 58.36
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Multitemporal NDVI Data Interpretation
A pixel-based visual analysis of a few spatial points is also presented.

The filtered values by the proposed 3D model are closer to the
observed ones than the 1D approach.

The included outliers do not influence next filtered values, evidencing
the robustness of the 3D-AR model.

The predictions based on the proposed model better capture the
seasonal behavior of the signal, useful for future decision making.

Time

N
D

V
I

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Time

N
D

V
I

0 10 20 30 40

−
0.

4
0.

0
0.

4
0.

8

●outlier

Time

N
D

V
I

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 11: Observed (points) unidimensional time series for pixels [25,25],
[50,50], [75,75], and their filtered values considering the 3D-AR(1) model
(continuous line) and unidimensional AR(1) model (dashed lines).
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Multitemporal NDVI Data Interpretation
Some land cover works are interested to the percentage of vegetation
in a certain scene [36, 37].

We analyzed the percentages of observed and filtered NDVI values
over 0.3, 0.5, and 0.7 thresholds.

The proposed model shows very similar percentages between
observed and filtered values.

These prediction results could be useful for a multitude of applications,
such as input of deterministic and stochastic models, from hydrology to
epidemiology.
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Figure 12: Percentage of NDVI values greater than 0.3, 0.5, and 0.7 over time.
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Conclusion

This paper proposes a 3D dynamical model for the interpretation of
multi-temporal remote sensing images.

Tools for parameter estimation, filtering, prediction, and anomaly
detection obtained from the models were also discussed.

As outliers are often present in remote sensing images, the weighted
least square estimation was considered as a robust alternative for
parameter estimation.

A simulation study was carried out for point estimation evaluation. The
simulation results validates the inference procedures.
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Conclusion

Since the model is useful to model signals that can be described as a
3D cube, an application to an NDVI data cube was performed.

The NDVI test show that the proposed 3D-AR model is able to model
the pattern of the time series, providing accurate filtered signals and
predicted values.

It was also capable to detect exogenous artifacts such as thick clouds
or sensor failures.

The numerical experiments show the flexibility and usefulness of the
proposed model to model 3D data cubes.

Indeed, the proposed model is general enough to model other types of
3D structures, such as hyperspectral images [38] and 3D heightmap,
where the third dimension is the wavelength in the former and the
altitude in the latter.

F. M. Bayer, UFSM A 3-D Spatiotemporal Model PIPGES/UFSCar-USP 37 / 44



References I

F. Petitjean, J. Inglada, and P. Gancarski, “Satellite image time series analysis under time
warping,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 8, pp.
3081–3095, 2012.

L. Poggio, A. Gimona, and I. Brown, “Spatio-temporal MODIS EVI gap filling under cloud
cover: An example in Scotland,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 72, pp. 56–72, 2012.

L. Xu, B. Li, Y. Yuan, X. Gao, and T. Zhang, “A temporal-spatial iteration method to
reconstruct NDVI time series datasets,” Remote Sensing, vol. 7, no. 7, pp. 8906–8924,
2015.

K.-F. Lin and D. Perissin, “Single-polarized SAR classification based on a multi-temporal
image stack,” Remote Sensing, vol. 10, no. 7, 2018.

A. Marinoni, G. C. Iannelli, and P. Gamba, “An information theory-based scheme for
efficient classification of remote sensing data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 10, pp. 5864–5876, 2017.

B. G. Palm, D. I. Alves, V. T. Vu, M. I. Pettersson, F. M. Bayer, R. J. Cintra, R. Machado,
P. Dammert, and H. Hellsten, “Autoregressive model for multi-pass SAR change detection
based on image stacks,” in SPIE Image and Signal Processing for Remote Sensing XXIV,
vol. 10789, 2018.

F. M. Bayer, UFSM A 3-D Spatiotemporal Model PIPGES/UFSCar-USP 38 / 44



References II

C. Marin, F. Bovolo, and L. Bruzzone, “Building change detection in multitemporal very high
resolution SAR images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 5, pp. 2664–2682, 2015.
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