

Seminários do Programa Interinstitucional de Pós-Graduação em Estatística

Epidemic Processes in Complex Networks

Francisco A. Rodrigues

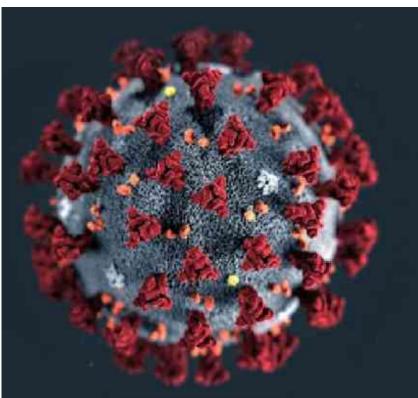
Instituto de Ciências Matemáticas de Computação

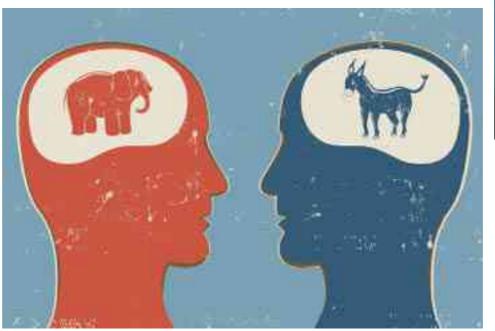
Universidade de São Paulo

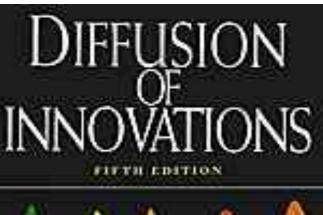
francisco@icmc.usp.br

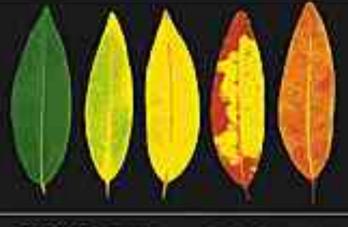
Spreading









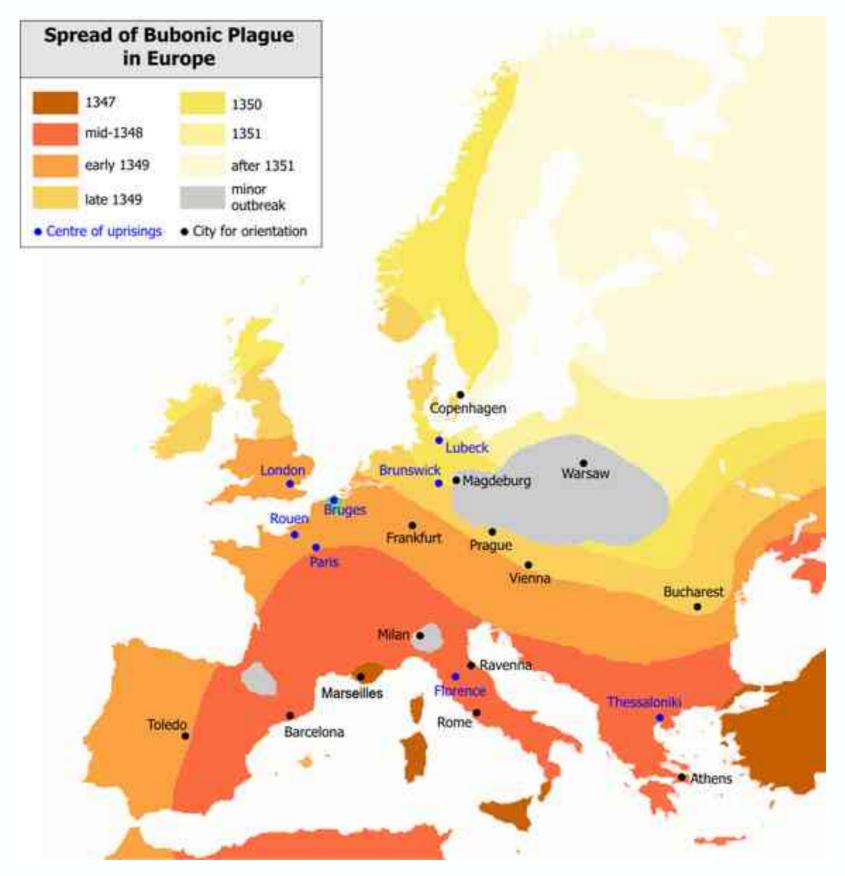


EVERETT M.ROGERS

Diseases

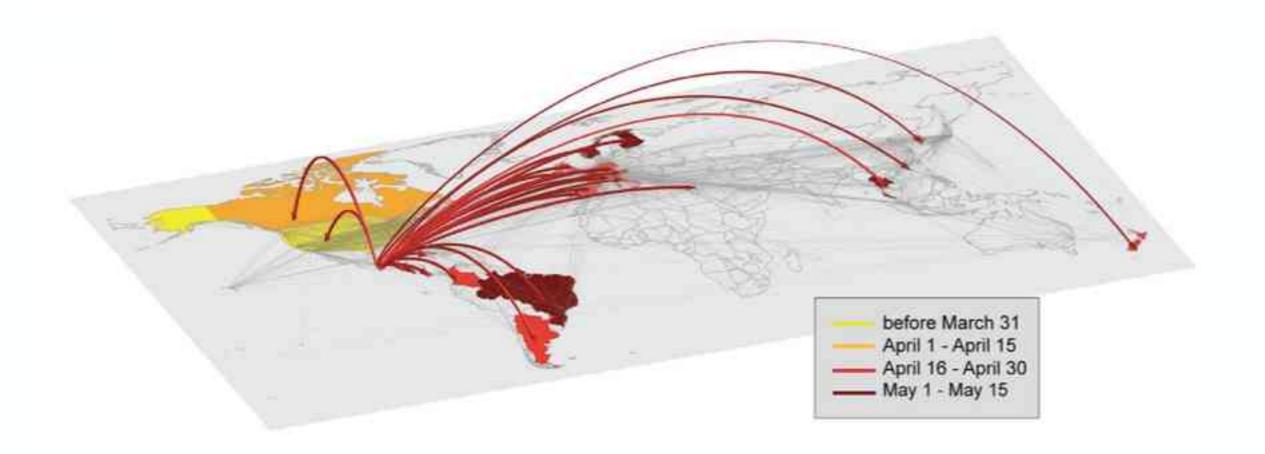
430 B.C.	Plague of Athens — 25% population		
<u>1300-</u> 1700	Plague ~75-200 million died		
<u>1816-</u> 1923			
1918-	Spanish Flu	CARLE MARKE	
1920	20-100 million died		
2003	S.A.R.S.	CAR DOPT ON CAR	
	775 deaths	Pieter Bruegel's "The Triumph of Death," depicting plague in the 16th century	
2009	H1N1 (Swine) Flu 18000 deaths	Image courtesy Museo del Prado, Madrid	C 2007 National Geographic Stickety: All Holits American
time			

Bubonic Plague



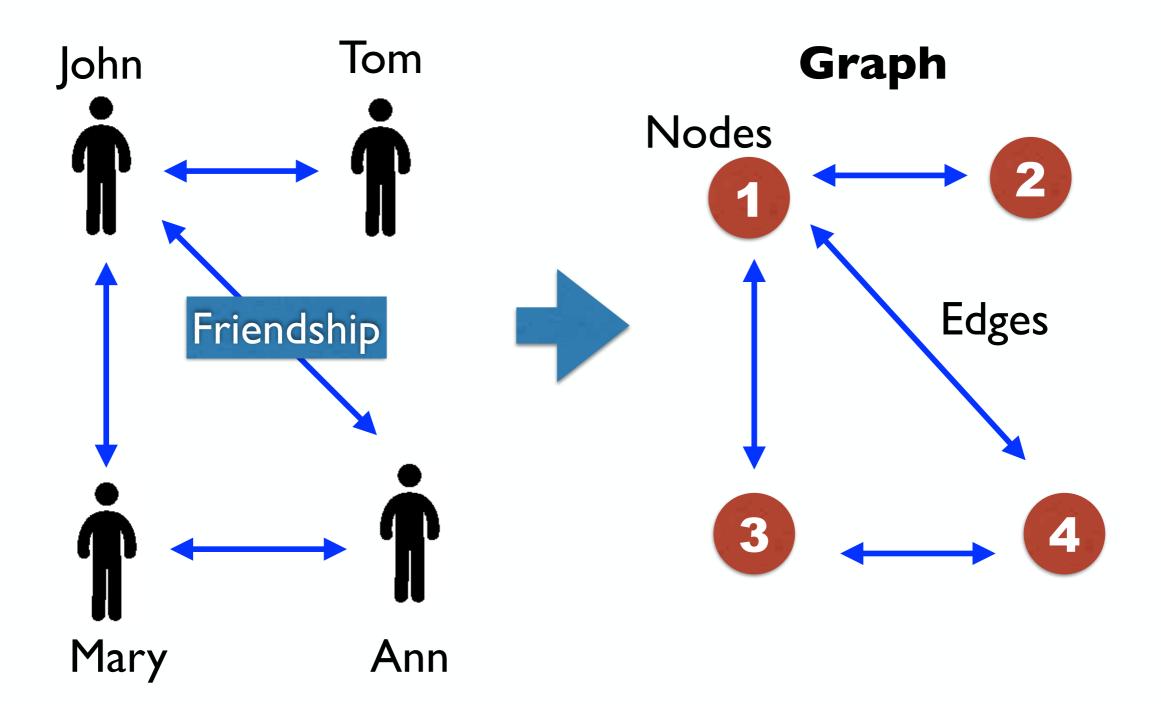
H1N1

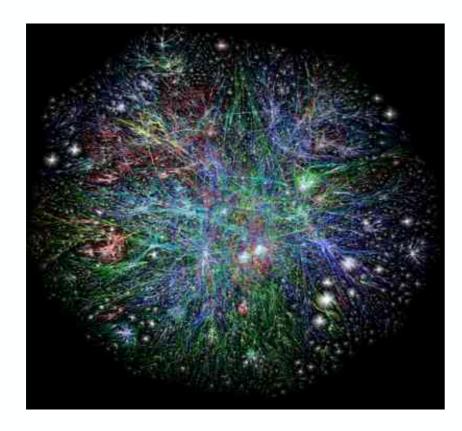
2009 flu pandemic

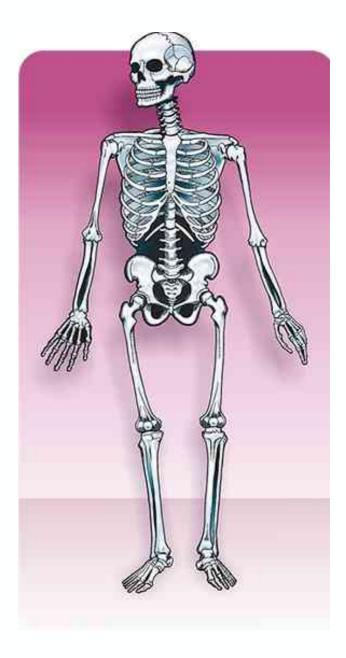


Spreading depends on the network structure!

What is a network?

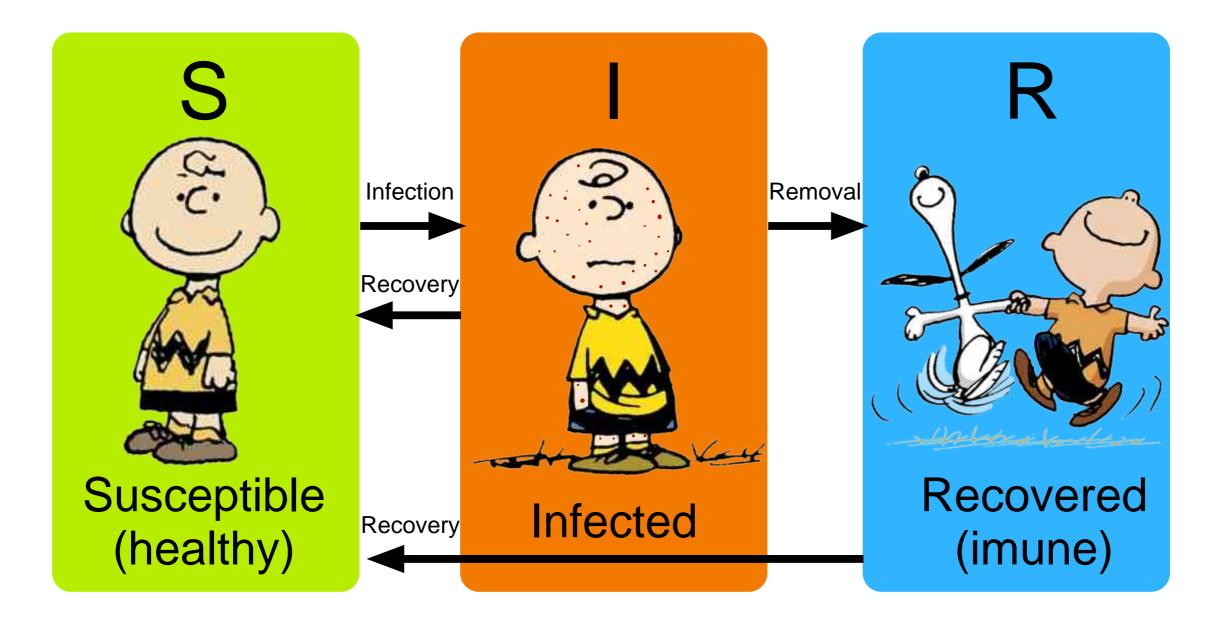




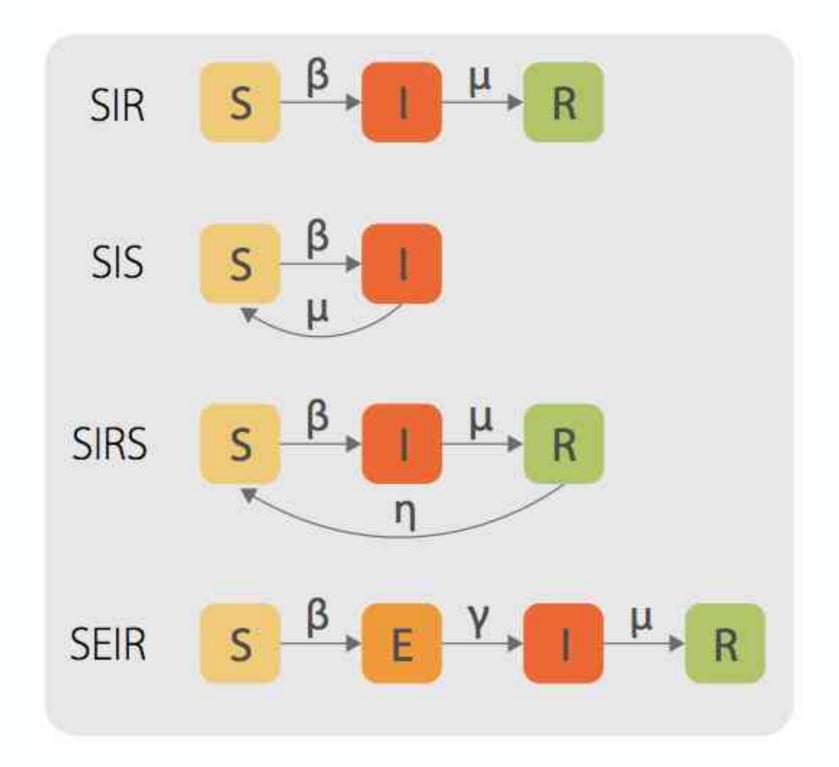


Networks represent the structure of complex systems.

Epidemic models

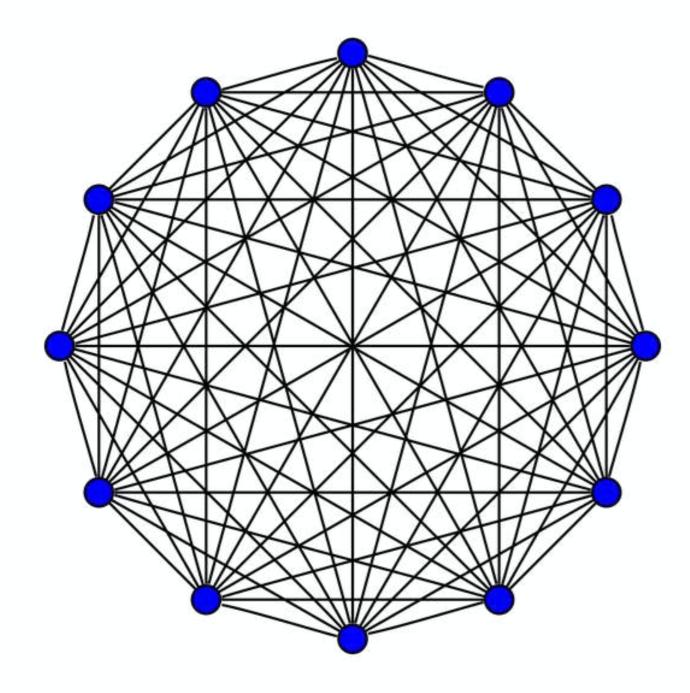


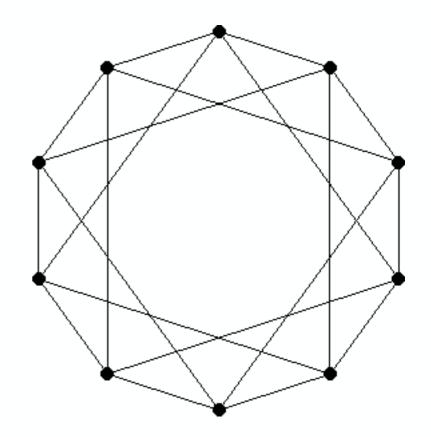
Epidemic models



Pastor-Satorras et al. Reviews of Modern Physics 2014

Epidemic models





Fully connected graph

Each vertex with k neighbors

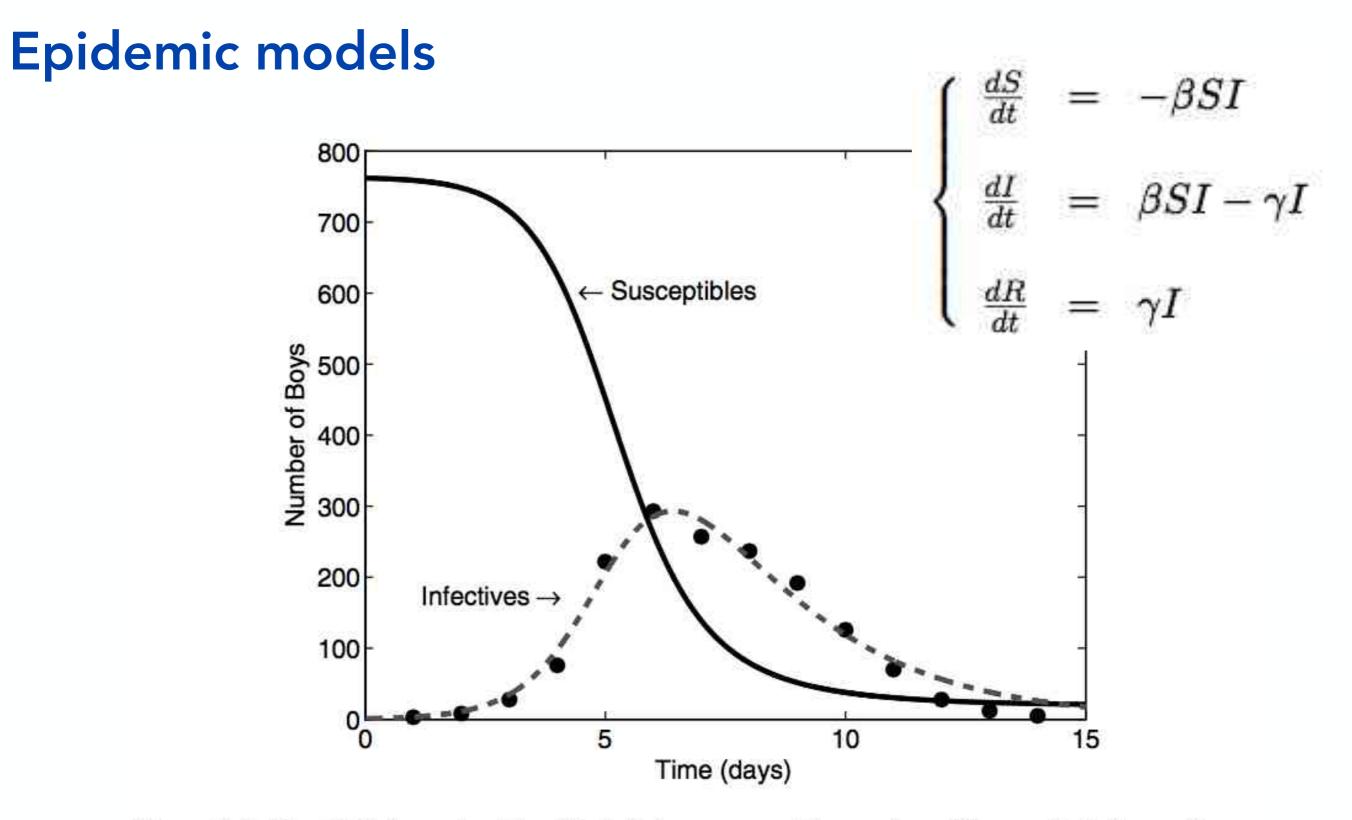
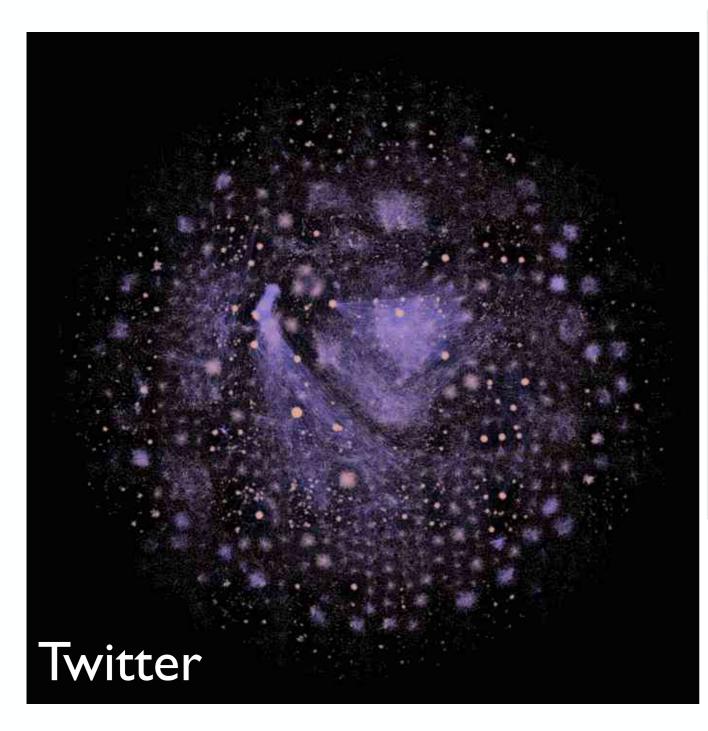
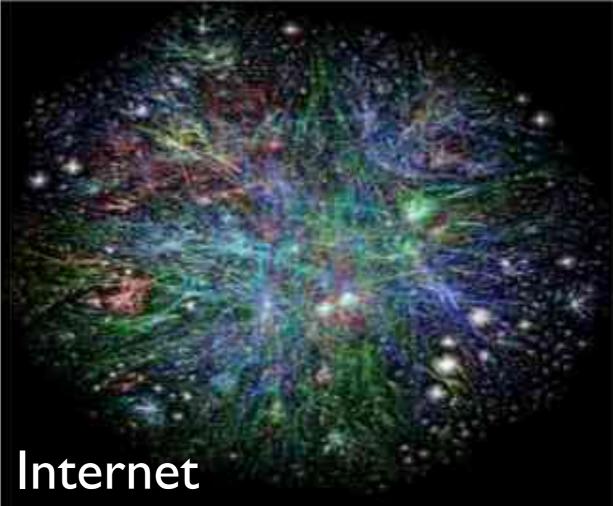


Figure 2.4. The SIR dynamics. The filled circles represent the number of boys with influenza in an English boarding school in 1978 (data from the March 4th edition of the British Medical Journal). The curves represent solutions from the SIR model fitted to the data using least squares. Estimated parameters are $\beta = 1.66$ per day and $1/\gamma = 2.2$ days, giving an R_0 of 3.65.

Networks

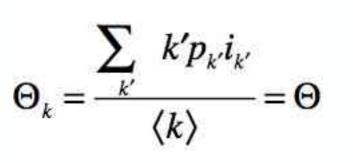
 $P(k) \approx k^{-\gamma}$





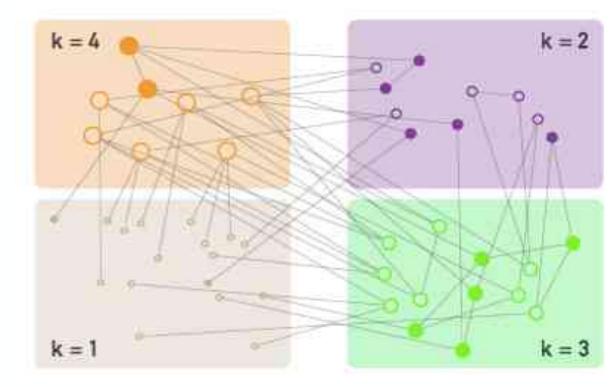
Degree-based mean field: SIS model

$$\frac{di_k}{dt} = \beta(1-i_k)k\Theta_k(t) - \mu i_k$$



V

the fraction of infected neighbors of a susceptible node k



Keeping only the first order terms:

$$\frac{di_k}{dt} = \beta k \Theta - \mu i_k$$

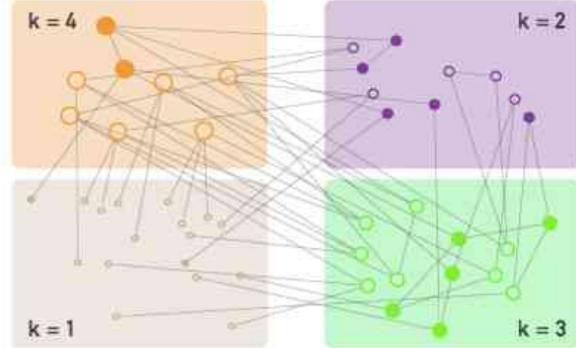
Multiplying the equation with $(k-1)pk/\langle k \rangle$ and summing over k

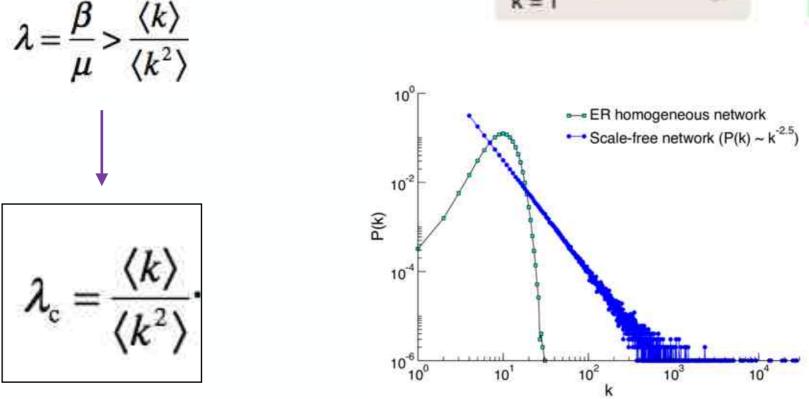
$$\frac{d\Theta}{dt} = \left(\beta \frac{\langle k^2 \rangle}{\langle k \rangle} - \mu\right) \Theta \longrightarrow \Theta(t) = C e^{t/\tau}, \quad \tau = \frac{\langle k \rangle}{\beta \langle k^2 \rangle - \langle k \rangle \mu} \text{ characteristic time}$$

Degree-based mean field: SIS model

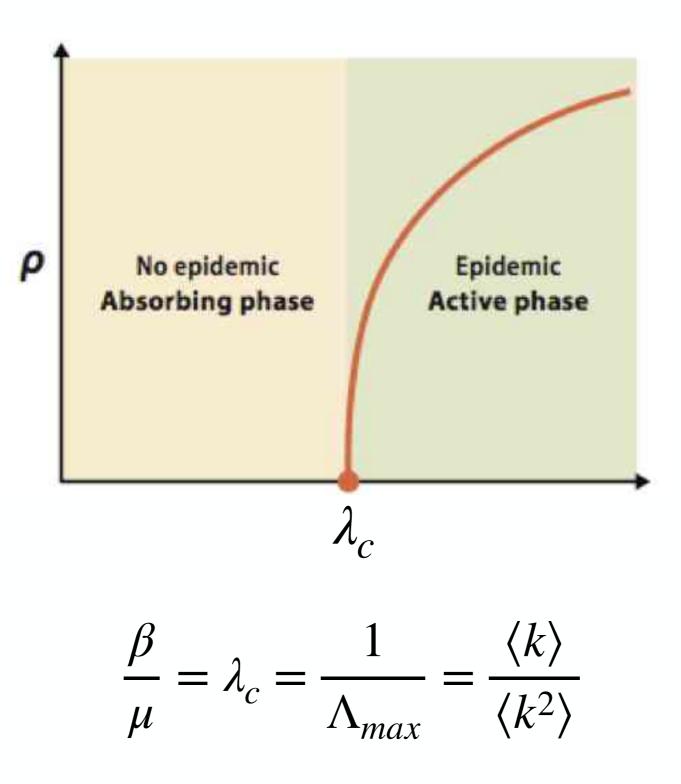
$$\Theta(t) = C e^{t/\tau}, \quad \tau = \frac{\langle k \rangle}{\beta \langle k^2 \rangle - \langle k \rangle \mu}$$

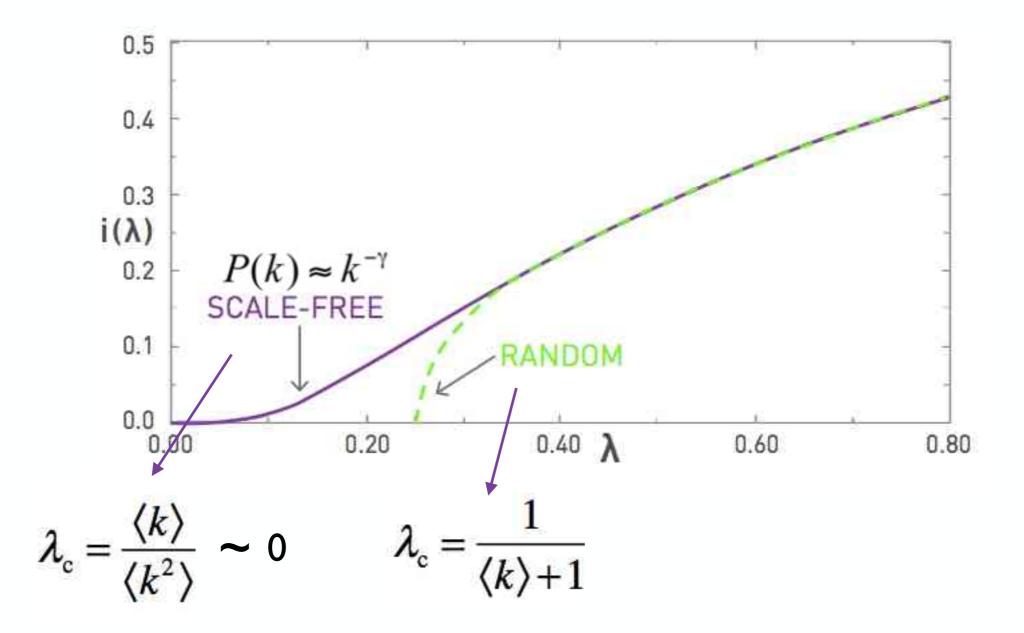
A global outbreak is possible if $\tau>0$, which yields the condition for a global outbreak as





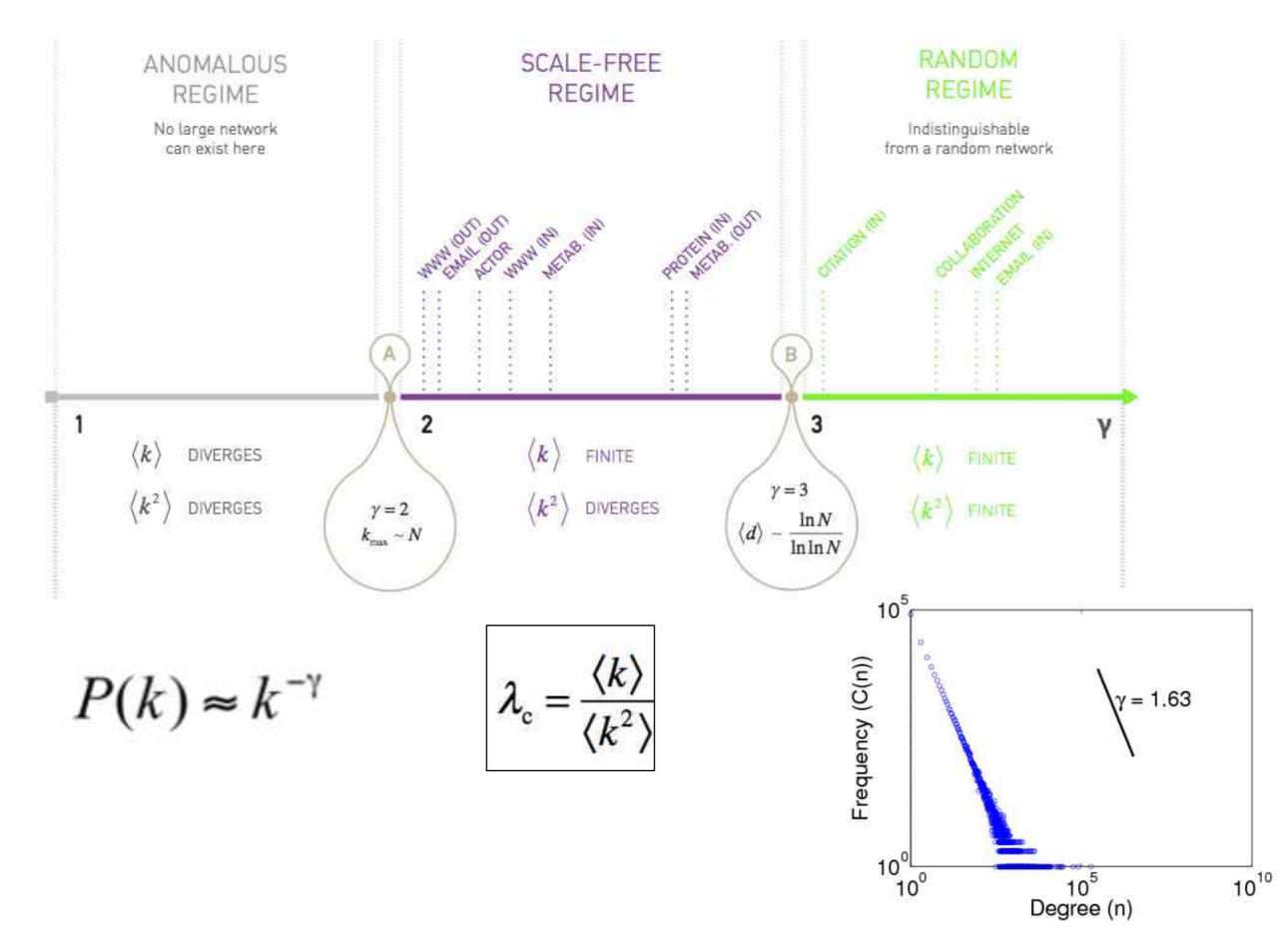
Satorras and Vespignani, PRL, 2001





A. L. Barabási, Network Science, Cambridge, 2015.

Scale-free networks



Discrete-time Markov chain approach

The evolution of the probability of infection of any node i:

$$p_i(t+1) = (1-q_i(t))(1-p_i(t)) + (1-\mu)p_i(t) + \mu(1-q_i(t))p_i(t)$$

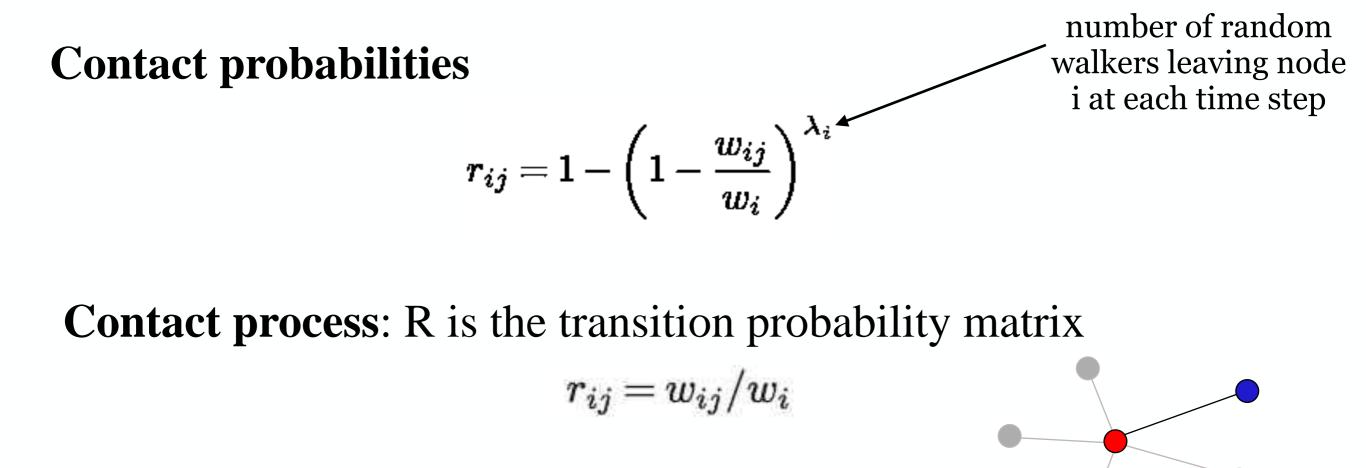
probability that node i is susceptible (1-pi(t)) and is infected (1-qi(t)) by at least a neighbor. the probability that node i is infected at time t and does not recover the probability that an infected node recovers $(\mu pi(t))$ but is reinfected by at least a neighbor (1 - qi(t)).

where the probability of node *i* not being infected by any neighbor is:

$$q_i(t) = \prod_{j=1}^N (1 - \beta r_{ji} p_j(t))$$

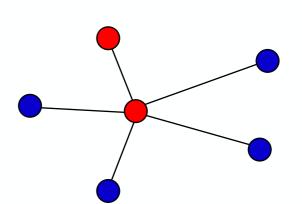
Gomez et al. EPL 2010.

Discrete-time Markov chain approach



Reactive process: R is the adjacency matrix

 $r_{ij} = a_{ij}$



Gomez et al. EPL 2010.

Discrete-time Markov chain approach

Considering that when $\beta \rightarrow \beta c$, the probabilities pi $\approx \epsilon i$, where $0 < \epsilon i \ll 1$,

$$q_i(t) = \prod_{j=1}^N (1 - \beta r_{ji} p_j(t)) \longrightarrow q_i \approx 1 - \beta \sum_{j=1}^N r_{ji} \epsilon_j$$

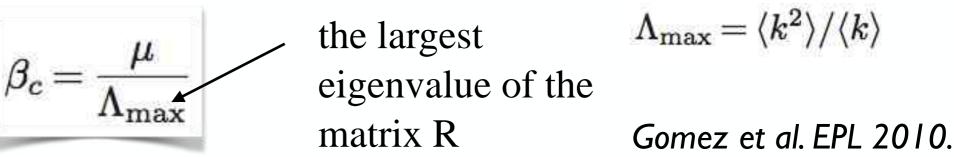
Including in:

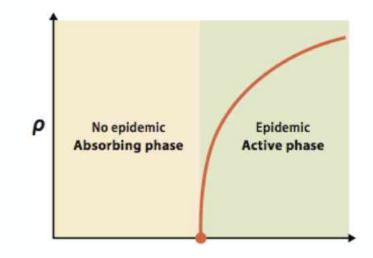
$$p_i(t+1) = (1-q_i(t))(1-p_i(t)) + (1-\mu)p_i(t) + \mu(1-q_i(t))p_i(t)$$

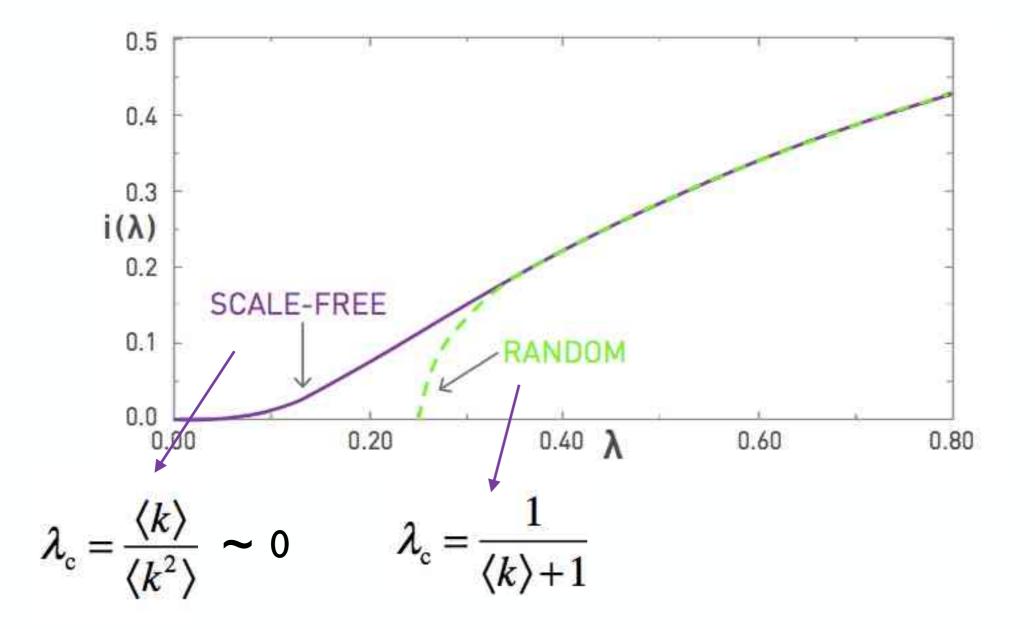
Neglecting second-order terms in ε we get

$$\sum_{j=1}^{N} \left(r_{ji} - \frac{\mu}{\beta} \delta_{ji} \right) \epsilon_j = 0, \qquad \forall i = 1, \dots, N,$$

This system has non trivial solutions if and only if μ/β is an eigenvalue of the matrix R. Since we are looking for the onset of the epidemic, the lowest value of β satisfying



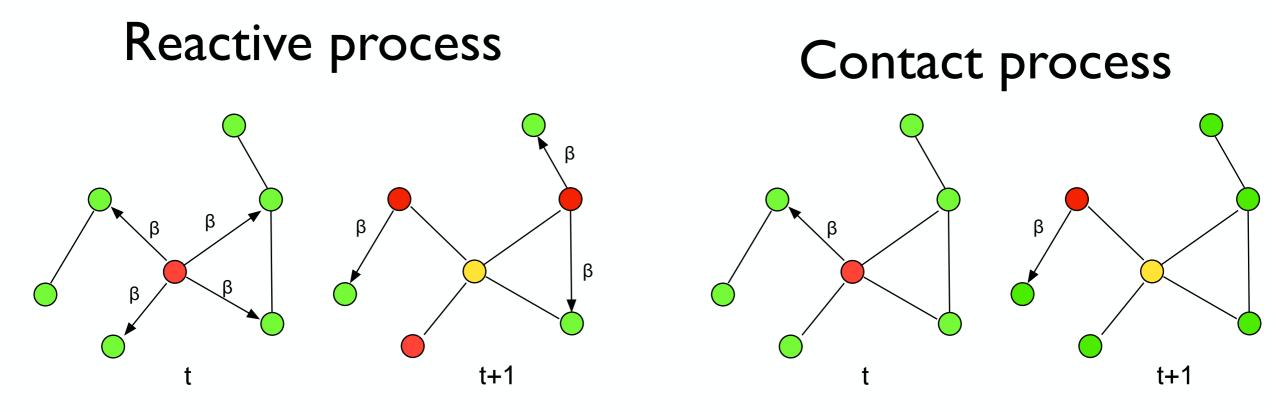




A. L. Barabási, Network Science, Cambridge, 2015.

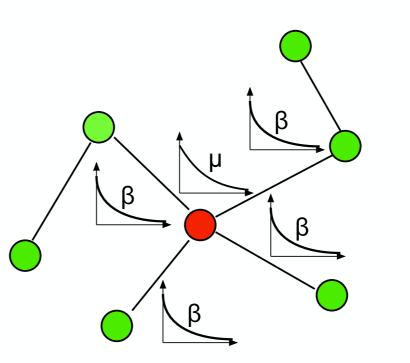
Simulation

Discrete time:



Continuous time:

Poisson Process Gillespie Algorithm



Epidemic spreading depends on the network structure

PHYSICS REPORTS

A Review Section of Physics Letters

Fundamentals of Spreading Processes in Single and Multilayer Complex Networks

> Available online at www.sciencedirect.com ScienceDirect

http://www.elsevier.com/locate/physrep

- 1. Mean-field
- 2. Markov chain
- 3. Quenched-MF (QMF)
- 4. Pair approximation
- 5. Individual based MF
- 6. Message passing
- 7. ..

Arruda, Rodrigues and Moreno, 2018

Disease control

Different strategies:

- Vaccination
- Quarantine
- Disease awareness

Disease awareness

CDC 🔮 @CDCgov - 6h

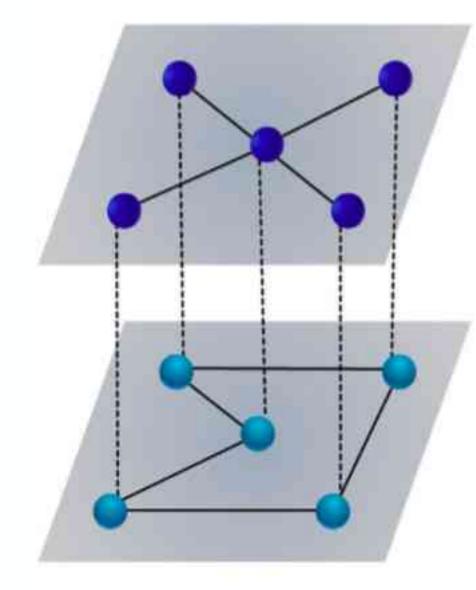
What does #flu look like near you? Check out our state flu activity map to learn more.

Even if flu activity is in your area, it's not too late to get yourself and your family vaccinated. bit.ly/2AfIS02 #FightFlu

Q 2 1] 38 V 49 P

Disease awareness

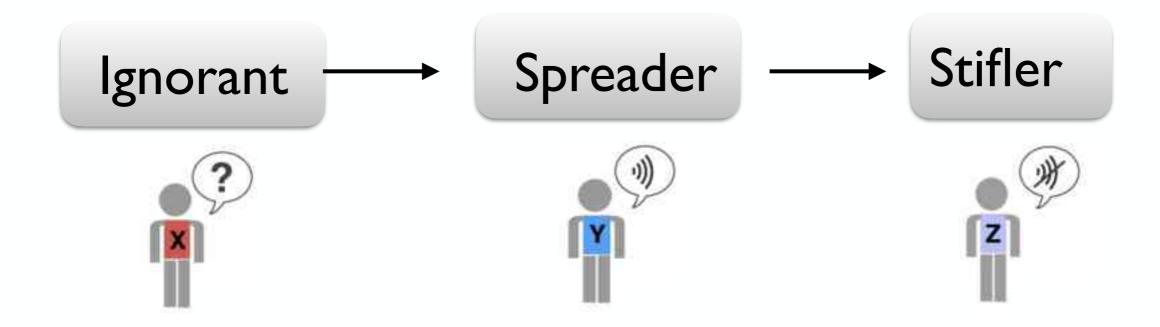
- If you know about the disease, then you try to avoid the infection.
- The probability of infection is reduced.



Rumour spreading

Disease transmission

Awareness = Rumour propagation



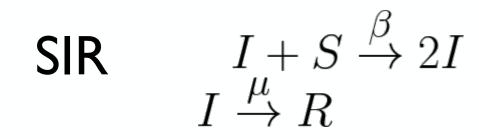
Deterministic compartmental models

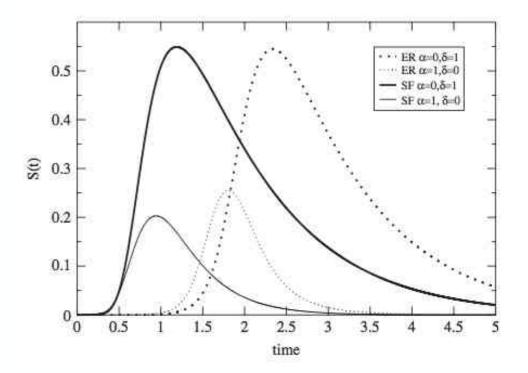
Maki-Thompson

$$I + S \xrightarrow{\beta} 2I$$
$$I + I \xrightarrow{\mu} I + R$$
$$I + R \xrightarrow{\mu} 2R$$

Daley-Kendal

$$\begin{array}{c} I+S \xrightarrow{\beta} 2I \\ I+I \xrightarrow{\mu} 2R \\ I+R \xrightarrow{\mu} 2R \end{array}$$

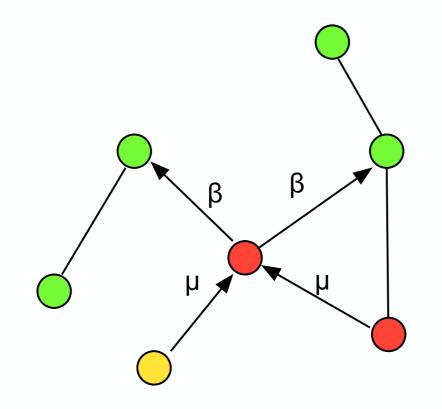


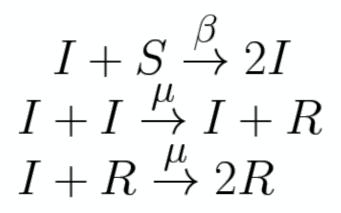


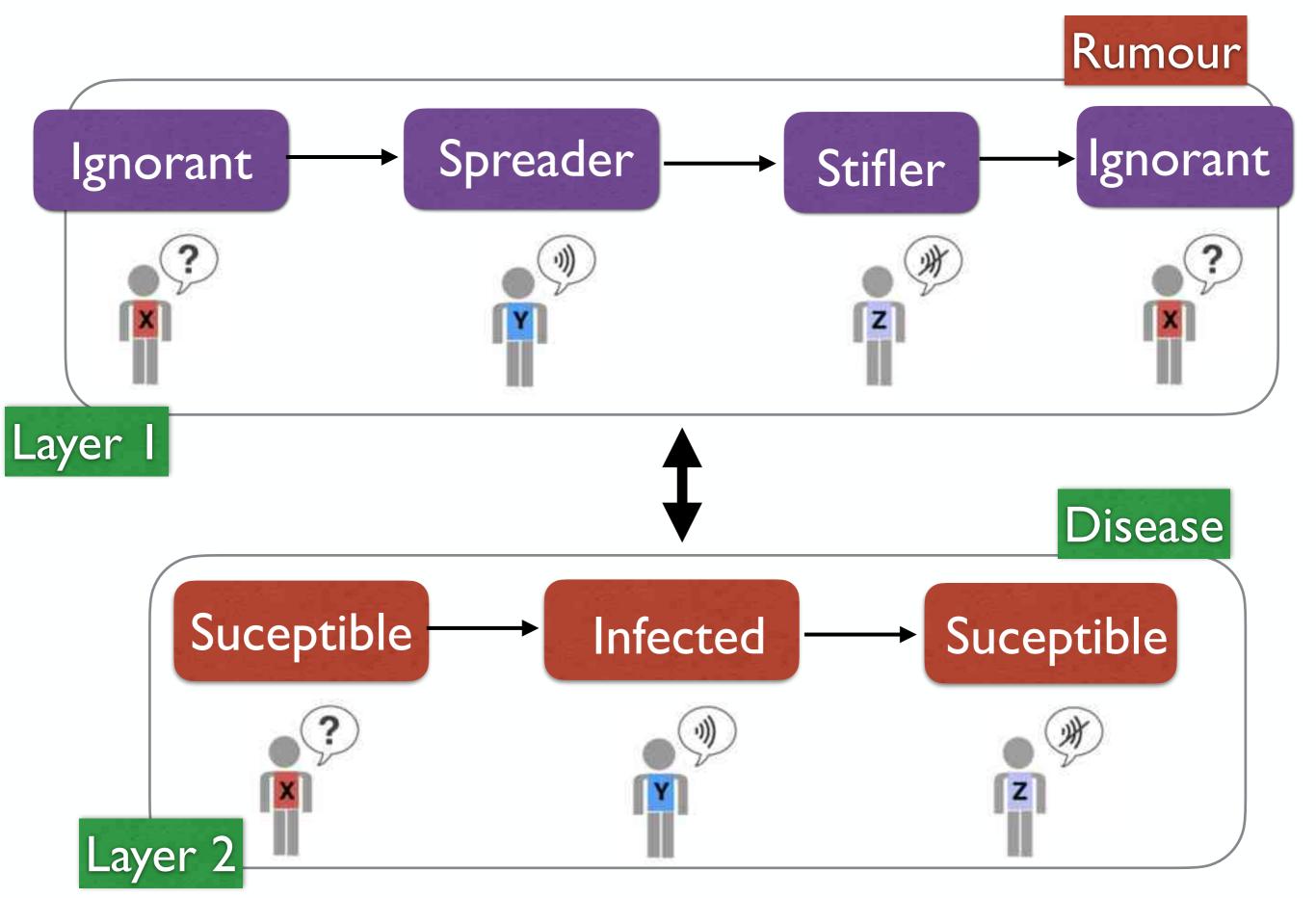
Moreno et al. PRE, 2004

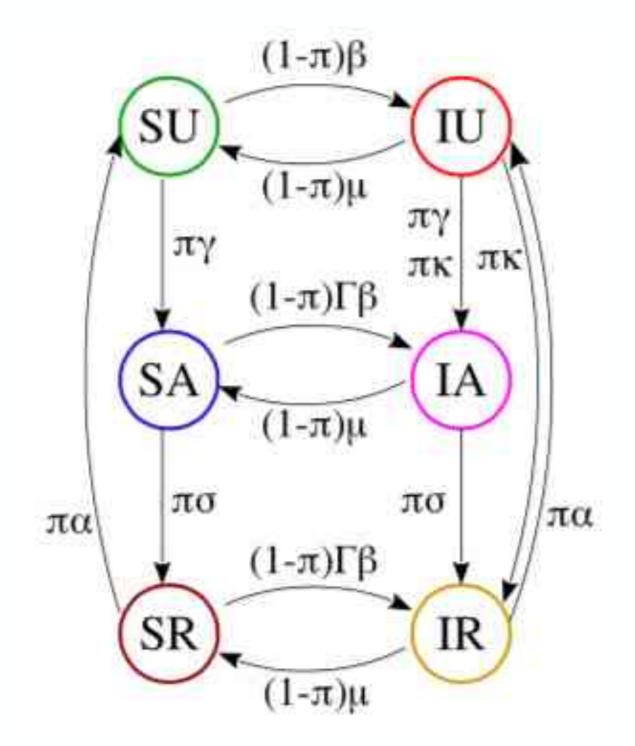
Simulation

Truncated process









- The rumour and disease propagate with different velocities.
- At each time step:
 - π : information
 - 1π : disease

https://arxiv.org/abs/1812.01386

Markov chain formulation:

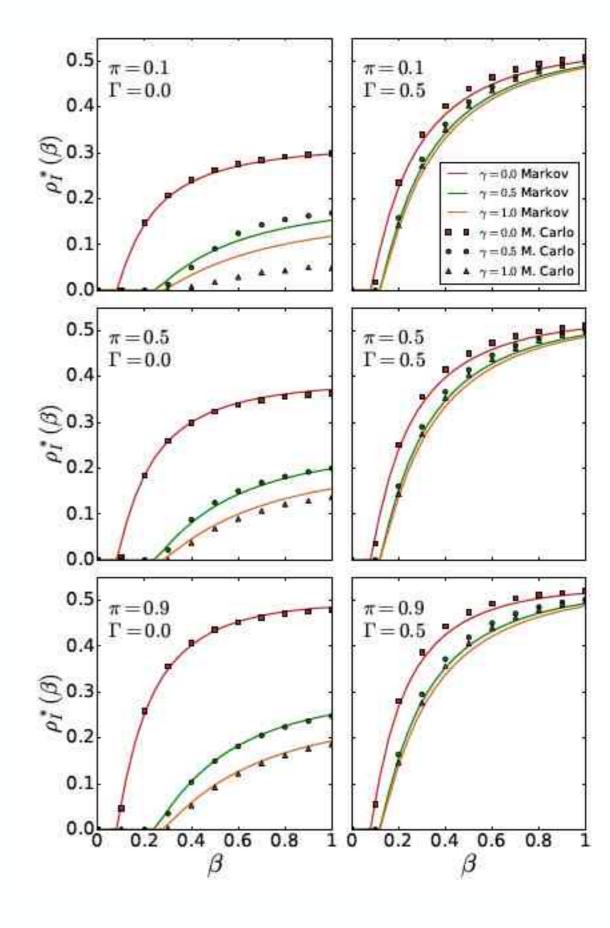
 π : information $1 - \pi$: disease

$$\begin{aligned} U \to U & S \to S \\ p_{SU}^{i}(t+1) = p_{SU}^{i}(t)[\pi(1-r_{U}^{i}(t)) + (1-\pi)(1-q_{U}^{i}(t))] \end{aligned}$$

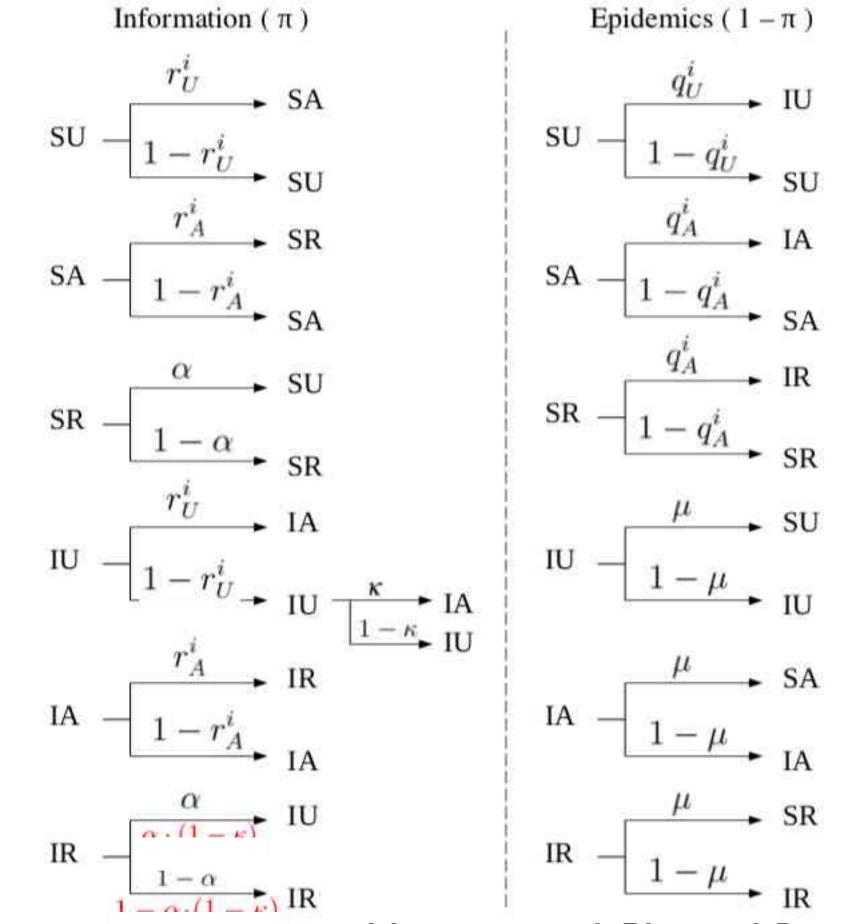
$$R \rightarrow U \qquad I \rightarrow S$$
$$+ p_{SR}^{i}(t)[\pi\alpha] + p_{IU}^{i}[(1 - \pi)\mu]$$

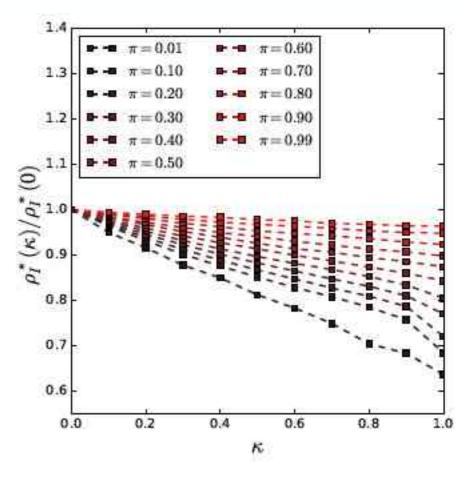
 q_U^i : infection of an unaware node r_U^i : awareness by contacting an aware neighbor r_A^i : stifling - lost of interest

$$\begin{split} p_{SU}^{i} &= p_{SU}^{i} [\pi (1 - r_{U}^{i}) + (1 - \pi)(1 - q_{U}^{i})] + \\ &+ p_{ISR}^{i} [\pi \alpha] + \\ &+ p_{IU}^{i} [(1 - \pi)\mu] & (A5) \end{split} \\ p_{SA}^{i} &= p_{SU}^{i} [\pi r_{U}^{i}] + \\ &+ p_{SA}^{i} [\pi (1 - r_{A}^{i}) + (1 - \pi)(1 - q_{A}^{i})] + \\ &+ p_{IA}^{i} [(1 - \pi)\mu] & (A6) \end{aligned} \\ p_{SR}^{i} &= p_{SA}^{i} [\pi r_{A}^{i}] + \\ &+ p_{SR}^{i} [\pi (1 - \alpha) + (1 - \pi)(1 - q_{A}^{i})] + \\ &+ p_{IR}^{i} [(1 - \pi)\mu] & (A7) \end{aligned} \\ p_{IU}^{i} &= p_{SU}^{i} [(1 - \pi)q_{U}^{i}] + \\ &+ p_{IR}^{i} [\pi (\alpha (1 - \kappa))] & (A7) \end{aligned} \\ p_{IU}^{i} &= p_{SU}^{i} [(1 - \pi)q_{U}^{i}] + \\ &+ p_{IR}^{i} [\pi \alpha (1 - \kappa)] & (A8) \end{aligned} \\ p_{IA}^{i} &= p_{SA}^{i} [(1 - \pi)q_{A}^{i}] + \\ &+ p_{IA}^{i} [\pi (r_{U}^{i} + (1 - r_{U}^{i})\kappa)] + \\ &+ p_{IA}^{i} [\pi (1 - r_{A}^{i}) + (1 - \pi)(1 - \mu)] & (A9) \end{aligned} \\ p_{IR}^{i} &= p_{SH}^{i} [(1 - \pi)q_{A}^{i}] + \\ &+ p_{IR}^{i} [\pi (\alpha \kappa + 1 - \alpha) + (1 - \pi)(1 - \mu)] & (A10) \end{aligned} \\ p_{IU}^{i} &= p_{SU}^{i} [(1 - \pi)q_{U}^{i}] + \\ &+ p_{IR}^{i} [\pi (\alpha \kappa + 1 - \alpha) + (1 - \pi)(1 - \mu)] + \\ &+ p_{IR}^{i} [\pi \alpha] & (A11) \end{aligned}$$



Ventura et al. Physical Review E, 100, 032313 (2019).





(a)Baseline model

Ventura et al. Physical Review E, 100, 032313 (2019).

SU

IA

► SA

IR

- SR

SU

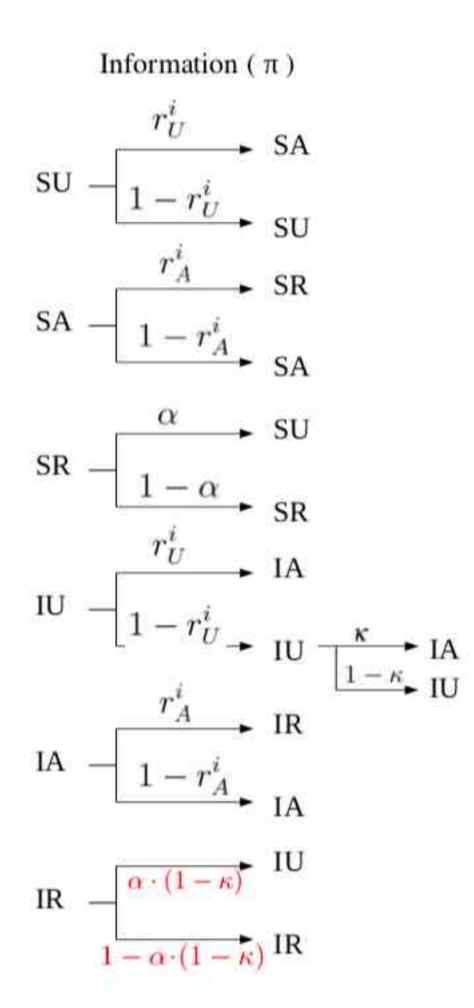
IU

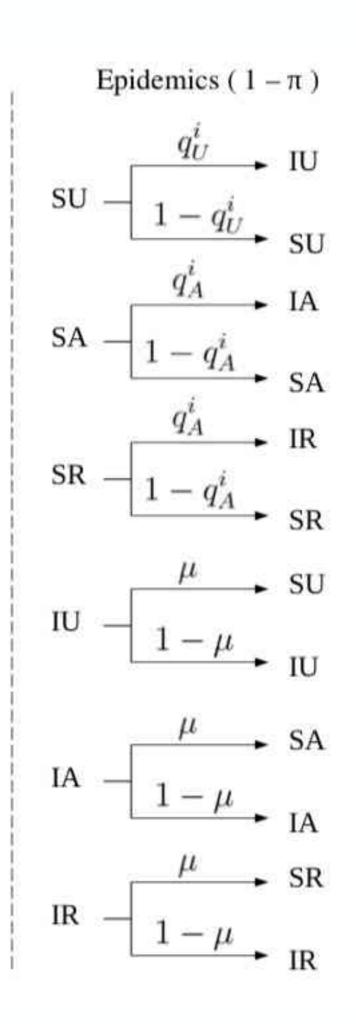
► SA

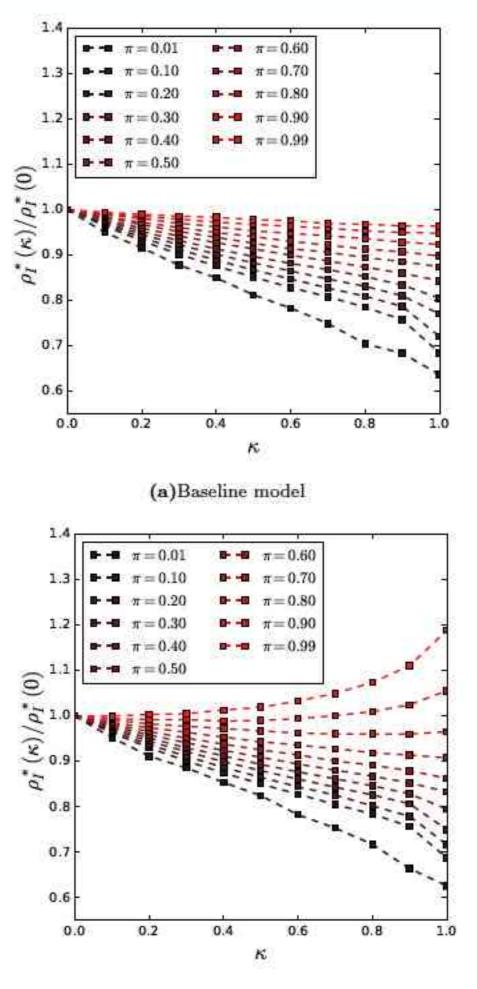
- IA

SR

IR

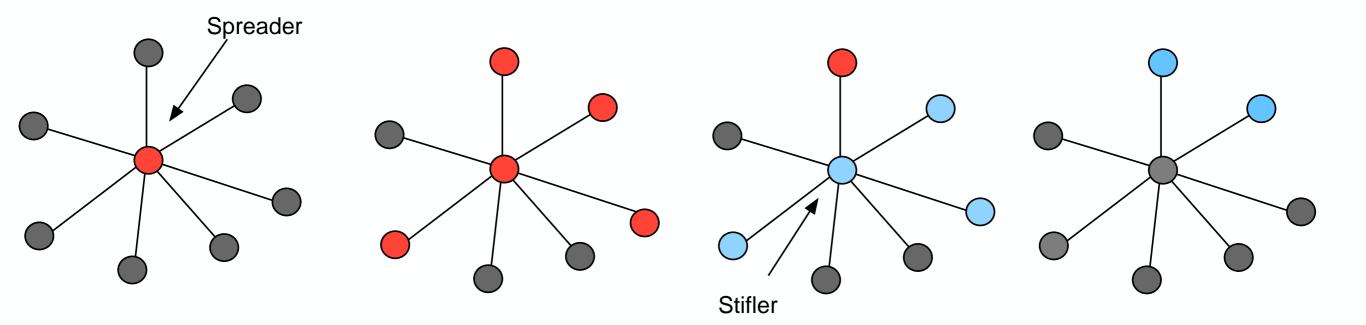






(b)Modified model

Epidemic spreading with awareness



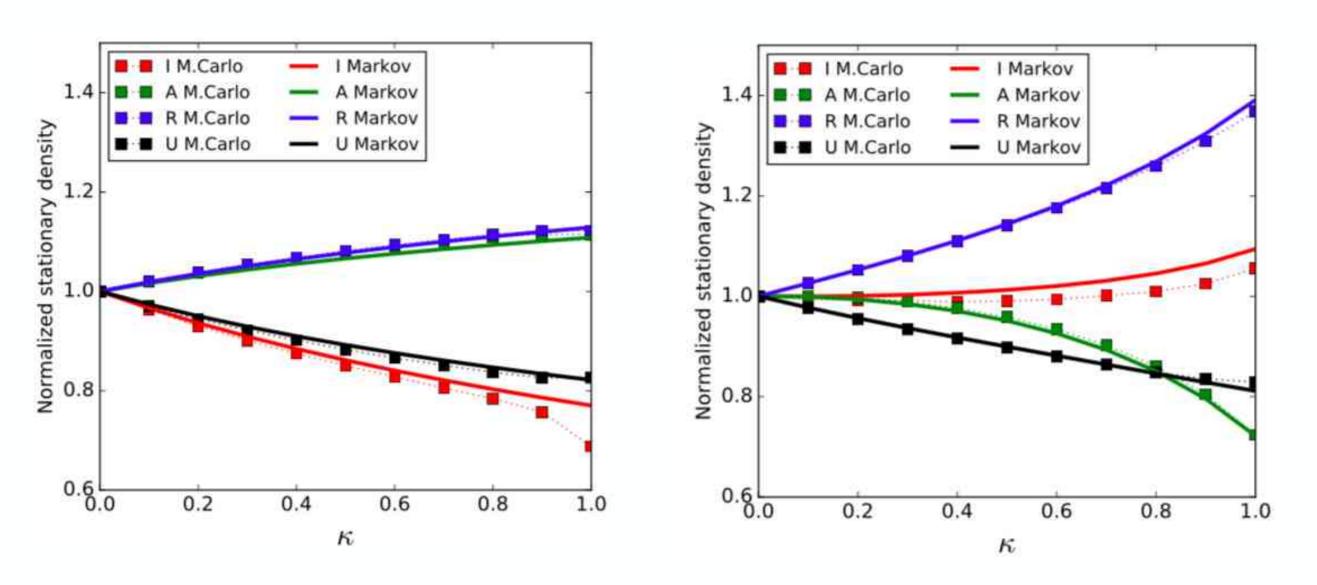
 $\xrightarrow{} \text{Time}$ $S + I \rightarrow S + S$ $S + S \rightarrow R + R$ $S + R \rightarrow R + R$ $R \rightarrow I$

S: Spreader I: Ignorant R: Stifler

Epidemic spreading with awareness

 $\pi = 0.1$

 $\pi = 0.9$



If the rumor propagation is too fast, then the outbreak increases!

Ventura et al. Physical Review E, 100, 032313 (2019).

Epidemic spreading with awareness

Applications

• Infectious diseases with no symptoms (Sexually transmitted diseases (STD)).

The Economist explains Why STDs are on the rise in America

A burgeoning pubic-health crisis

The Economist explains > Jul 18th 2018 | by I.K. | WASHINGTON, DC

Time scale plays a fundamental role on the epidemic spreading with

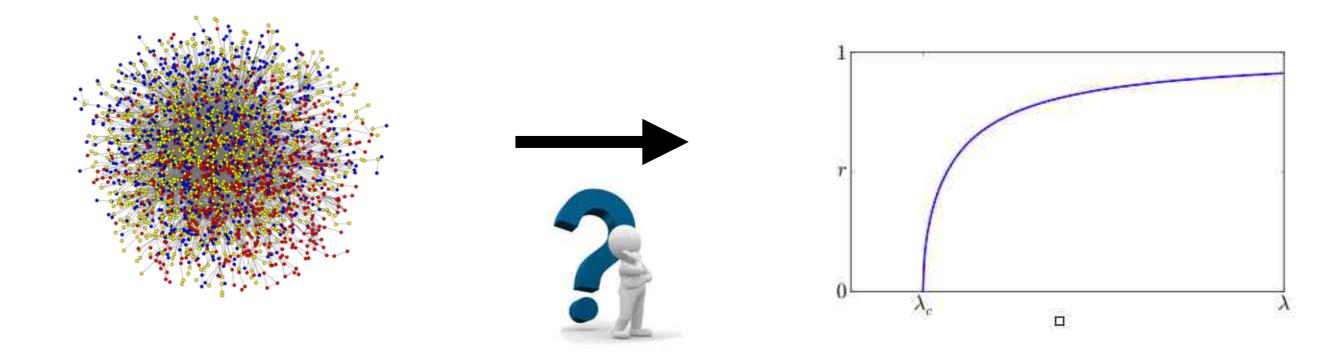
awareness.

Ventura et al. Physical Review E, 100, 032313 (2019).

Predicting epidemic spreading

Epidemic spreading depends on the network structure.

Can we predict this dynamics process from the network structure?



Inference X Prediction

Inference: the goal is to understand the role of the input variables in explaining the outcome.

• To explain the data we have.

Prediction: the goal is to predict the outcome from the income data.

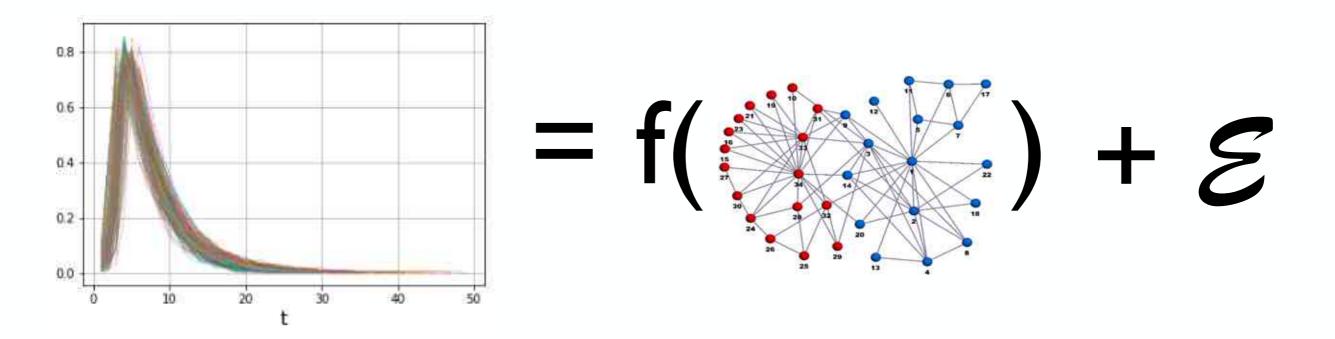
• Based on the date we have, predict new data.

Inference and Prediction

Global level: Consider the large-scale network properties to predict the outbreak size.

Local level: Consider the node properties to predict the average outbreak size when the disease starts at each node.

Hypothesis:



$$Y = f(X) + \varepsilon$$

 $f(x): \mathbb{R}^d \to \mathbb{R}$

Regression model

d: number of features

Dataset:

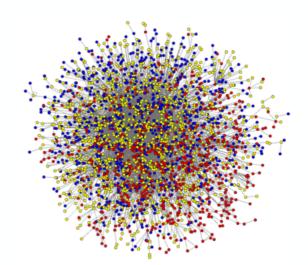
Each observation: a network

Attributes: Large scale network measures

Models

- ER
- BA
- Non-linear BA
- WS
- Waxman
- Spatial scale-free
- Assortative scale-free
- Dissassortative scale-free

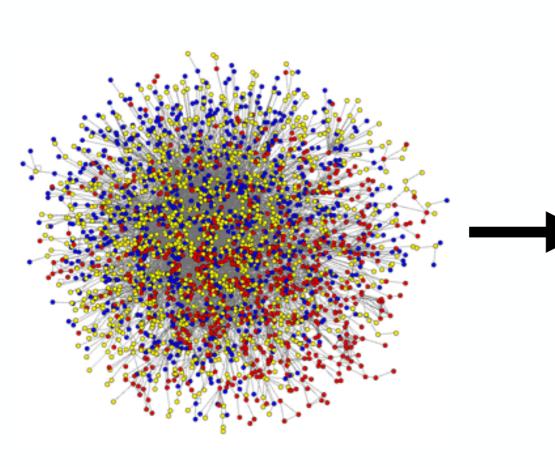
50 networks for each model



Dataset:

Each observation: a network

Attributes: Large scale network measures



Measures:

- Average search information
- Number of articulation points
- Second moment of degree distribution
- Shannon entropy of the degree distribution
- Average efficiency
- Assortativity coefficient
- Average clustering coefficient
- Average coreness (hkci),
- Transitivity
- Variance of the betweenness centrality

Beta regression

$$f(y;\mu,\phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}$$

$$\frac{E(y) = \mu}{\operatorname{var}(y)} = \frac{\mu(1-\mu)}{1+\phi}.$$

$$g_{1}(\mu) = \beta_{0} + \beta_{1}S + \beta_{2}A + \beta_{3}\langle k^{2} \rangle + \beta_{4}E + \beta_{5}H + \beta_{6}r + \beta_{7}\langle cc \rangle + \beta_{8}\langle kc \rangle + \beta_{9}C,$$

$$g_{2}(\phi) = \gamma_{0} + \gamma_{1}V(B) + \gamma_{2}\langle cc \rangle + \gamma_{3}H + \gamma_{4}V(B)\langle cc \rangle + \gamma_{5}V(B)H + \gamma_{6}\langle cc \rangle H + \gamma_{7}V(B)\langle cc \rangle H.$$

Beta regression

Epidemic spreading

Mean	Std. error	p-value	Measure	Mean St	ţ,
β_0 1.913	0.001	≈ 0	100	β_0 1.43	(
$\beta_1 - 0.200$	0.008	≈ 0	\boldsymbol{S}	$\beta_1 - 0.290$	(
$\beta_2 - 0.123$		pprox 0	A	$\beta_2 - 0.142$	1
β ₃ -0.097	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	≈ 0	$\langle k^2 \rangle$	$\beta_3 0.196$	(
$\beta_4 0.108$		≈ 0	E'	β_4 -0.231	1
β_5 0.063		≈ 0	H	$\beta_5 0.043$	1
$\beta_6 - 0.134$		≈ 0	r	$\beta_6 0.000$	1
β ₇ 0.002		0.843	$\langle cc \rangle$	$\beta_7 - 0.188$	1
$\beta_8 0.066$	0.008	≈ 0	$\langle kc \rangle$	$\beta_8 0.127$	1
$\beta_9 0.119$	0.012	≈ 0	C	$\beta_9 \ 0.072$	1
γ_0 9.611	0.151	≈ 0	Ender, 1	γ_0 8.828	(
$\gamma_1 0.065$	0.158	0.681	V(B)	γ_1 -1.863	1
γ_2 -0.562	0.304	0.064	$\langle cc \rangle$	γ_2 -1.007	1
γ ₃ -0.388	0.201	0.053	H	$\gamma_3 - 1.194$	1
$\gamma_4 - 0.483$	0.346	0.163	$V(B): \langle cc \rangle$	$\gamma_4 \ 0.134$	1
γ ₅ -0.191	0.333	0.566	V(B):H	γ_5 -0.875	1
γ ₆ -0.01	0.263	0.968	$\langle cc \rangle : H$	γ_{6} 0.338	1
γ7 -0.223	0.183	0.224	$V(B): \langle cc \rangle : H$	$\gamma_7 - 0.021$	1

Rumour spreading

	Mean	Std. error	p-value	Measure
β_0	1.43	0.001	≈ 0	1 1 1 1 1
β_1	-0.290	0.010	pprox 0	\boldsymbol{S}
β_2	-0.142	0.005	pprox 0	A
β_3	0.196	0.017	pprox 0	$\langle k^2 \rangle$
β_4	-0.231	0.018	≈ 0	E
β_5	0.043	0.008	pprox 0	H
β_6	0.000	0.002	0.813	r
β_7	-0.188	0.020	pprox 0	$\langle cc \rangle$
β_8	0.127	0.008	pprox 0	$\langle kc \rangle$
β_9	0.072	0.017	pprox 0	C
γ_0	8.828	0.151	≈ 0	1.
71	-1.863	0.158	pprox 0	V(B)
γ_2	-1.007	0.303	0.001	$\langle cc \rangle$
73	-1.194	0.201	pprox 0	H
γ_4	0.134	0.346	0.698	$V(B)$: $\langle cc \rangle$
γ_5	-0.875	0.333	0.009	V(B):H
γ_6	0.338	0.263	0.198	$\langle cc \rangle : H$
77	-0.021	0.183	0.911	$V(B): \langle cc \rangle : H$

The most influential topological measure in both dynamics is the average search information (S).

Beta regression

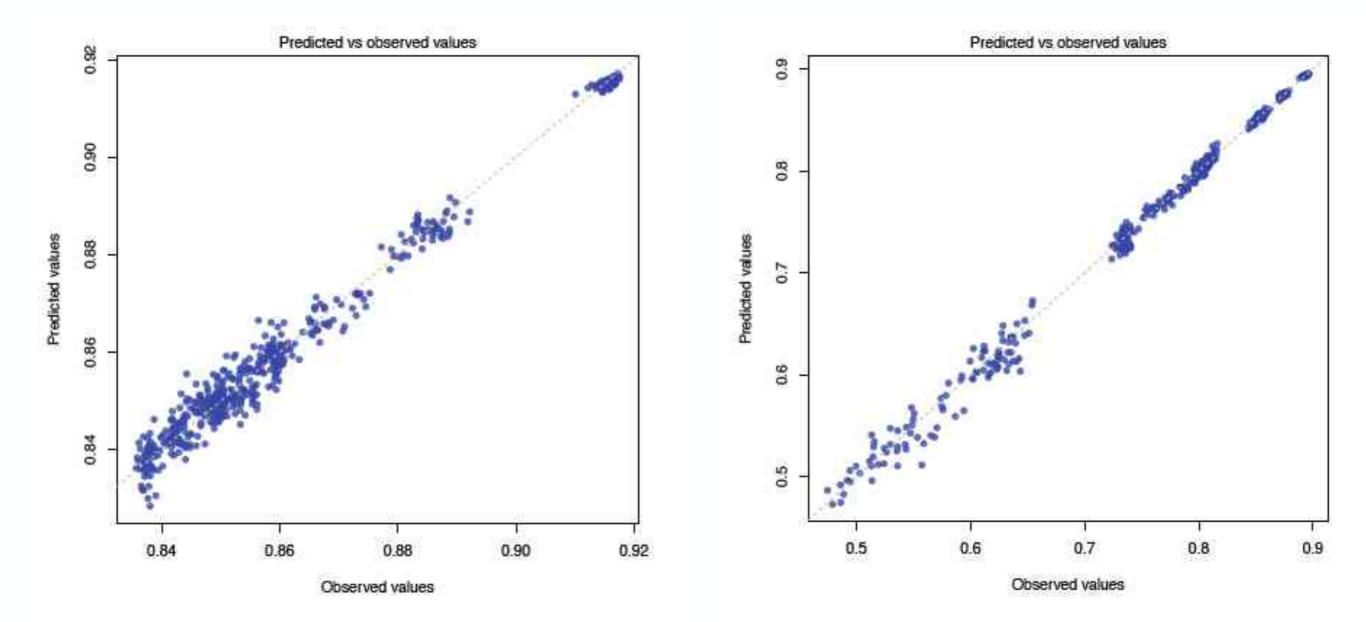
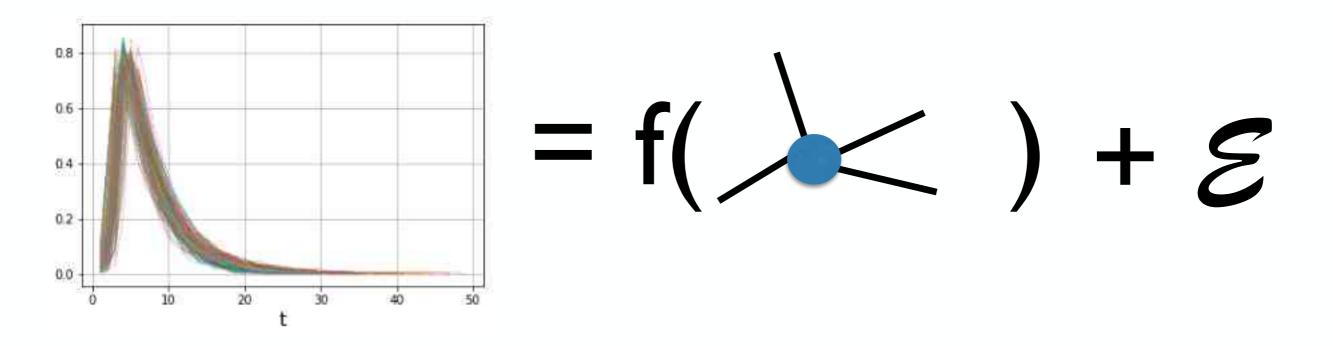


FIG. 3: Predicted vs Observed values for the SIR model.

FIG. 4: Predicted vs Observed values for the ISR model.

Hypothesis:



$$Y_i = f(X_i) + \varepsilon$$

 $f(x): \mathbb{R}^d \to \mathbb{R}$

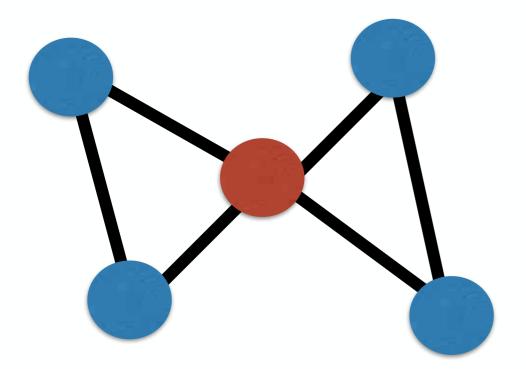
Regression model

d: number of features

Rodrigues et al., https://arxiv.org/abs/1910.00544

Structure X Dynamics: Prediction

Local level: predict the average outbreak size of a disease starting in a single node from the node properties.



 Nodes (observations) are not independent, then traditional regression models cannot be considered.

Rodrigues et al., https://arxiv.org/abs/1910.00544

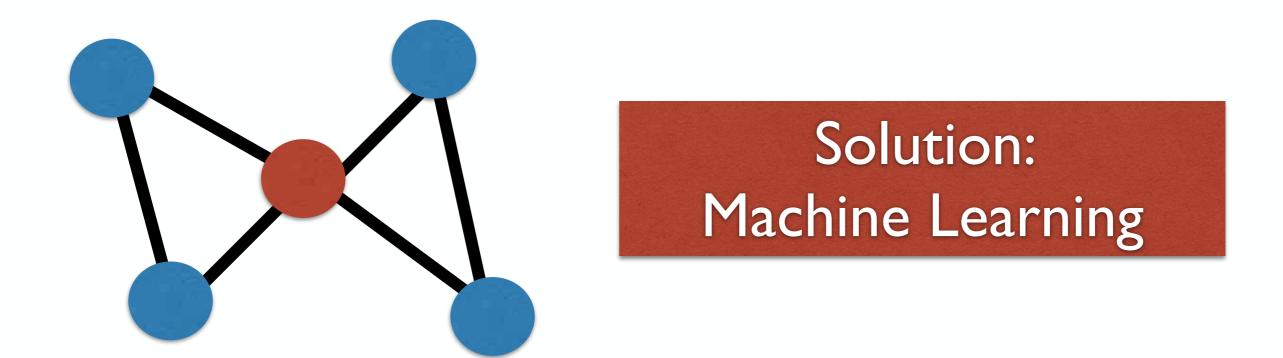
 $Y = f(X) + \varepsilon$

 $f(x): \mathbb{R}^d \to \mathbb{R}$

• The function *f* is very complicated due to the presence of non-trivial patterns of connections, nonlinear effects and correlations between variables...

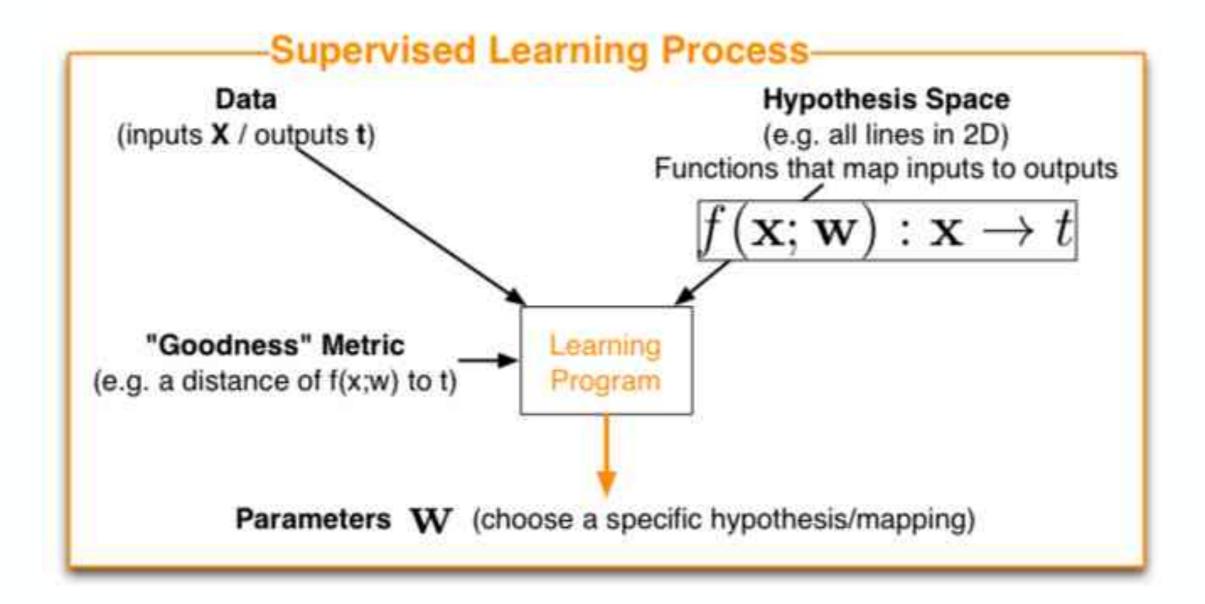
Rodrigues et al., in preparation

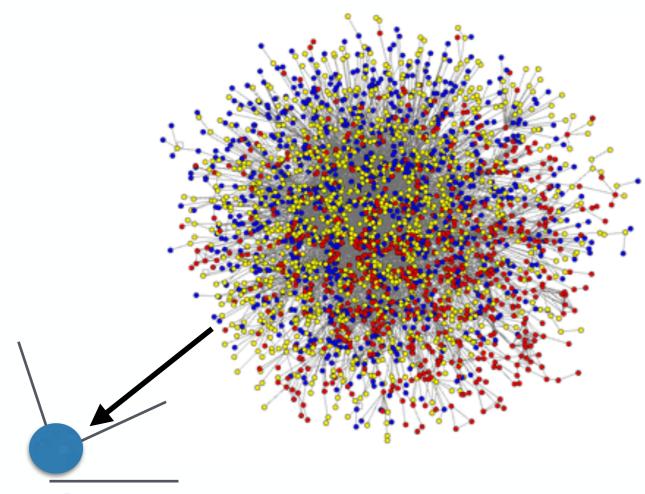
Structure X Dynamics: Prediction

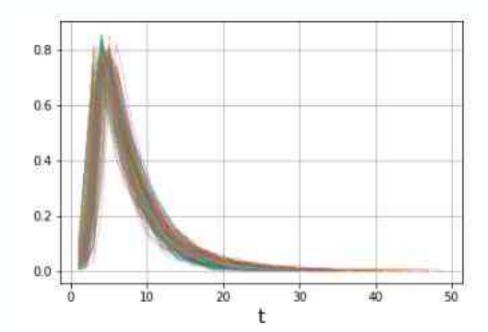


Rodrigues et al., https://arxiv.org/abs/1910.00544

Supervised (inductive) Learning

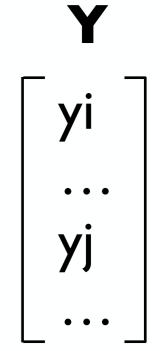






node i

X



Epidemic spreading

• We define Yi as the expected fraction of infected nodes when the disease starts in *i*

$$Y_i = \lim_{t \to \infty} \frac{1}{N} \sum_{i=1}^N Z_i(t),$$

$$Y_i = f(X_i) + \varepsilon$$

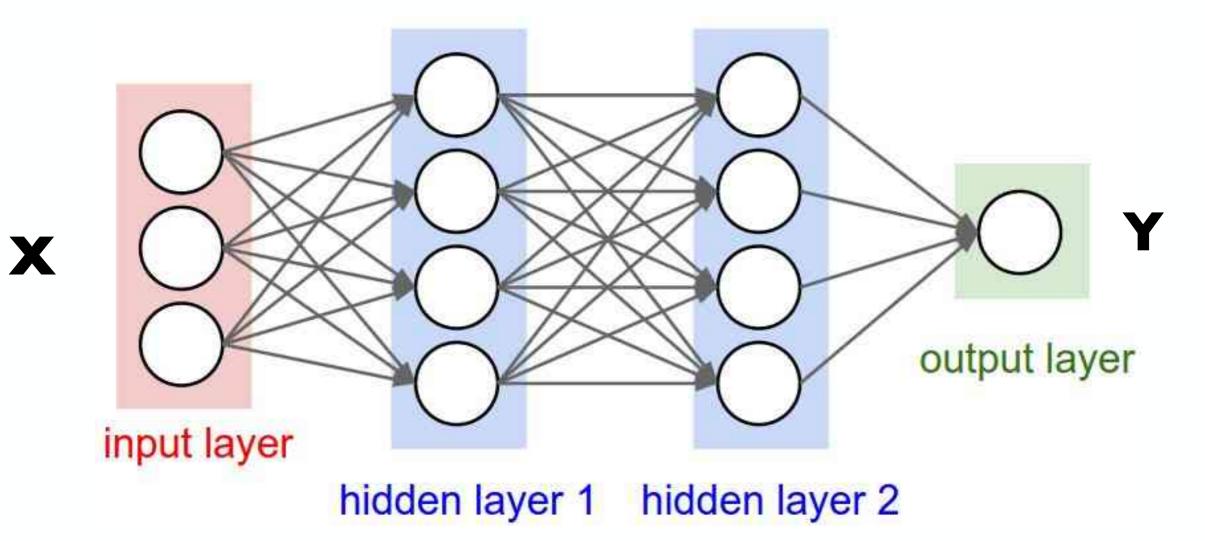
Rodrigues et al., https://arxiv.org/abs/1910.00544

Machine learning:

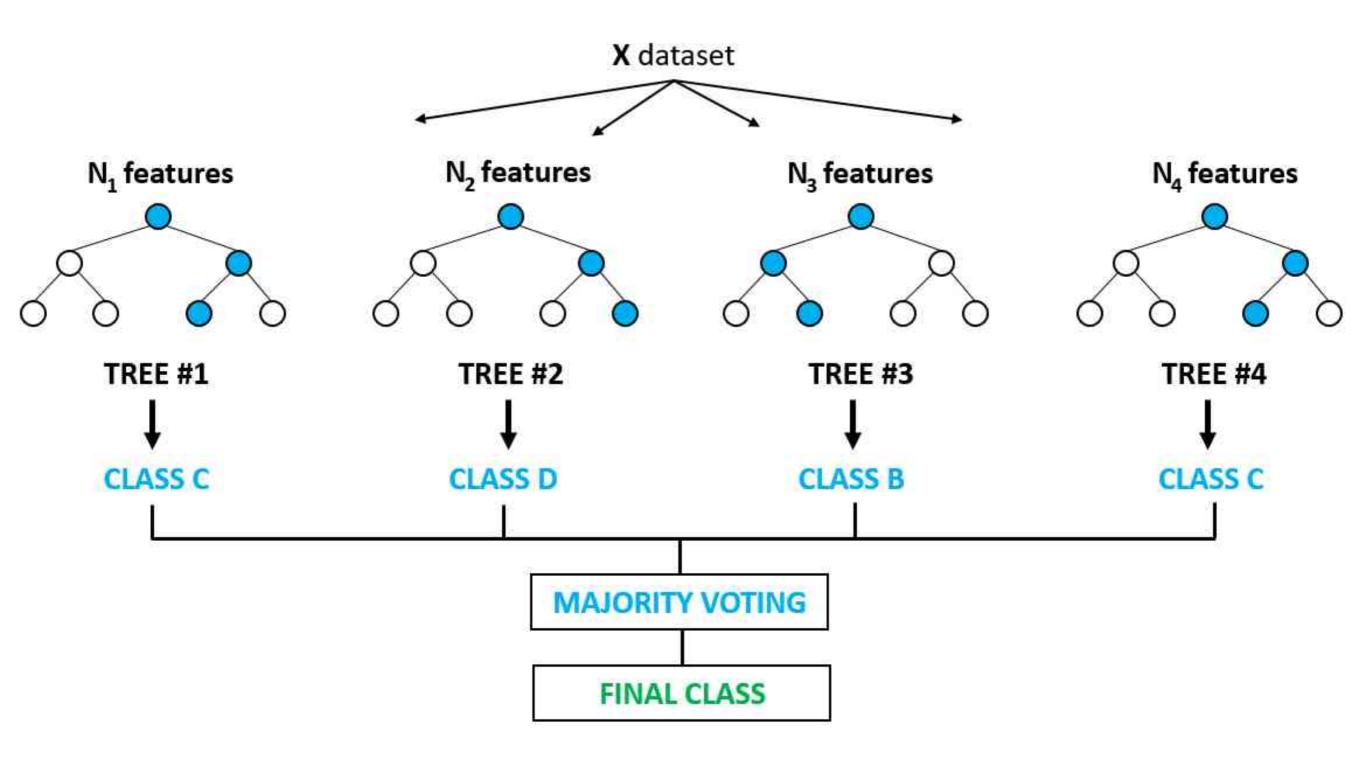
- To obtain the function $f(x) : \mathbb{R}^d \to \mathbb{R}$
 - Random forests
 - Neural Networks

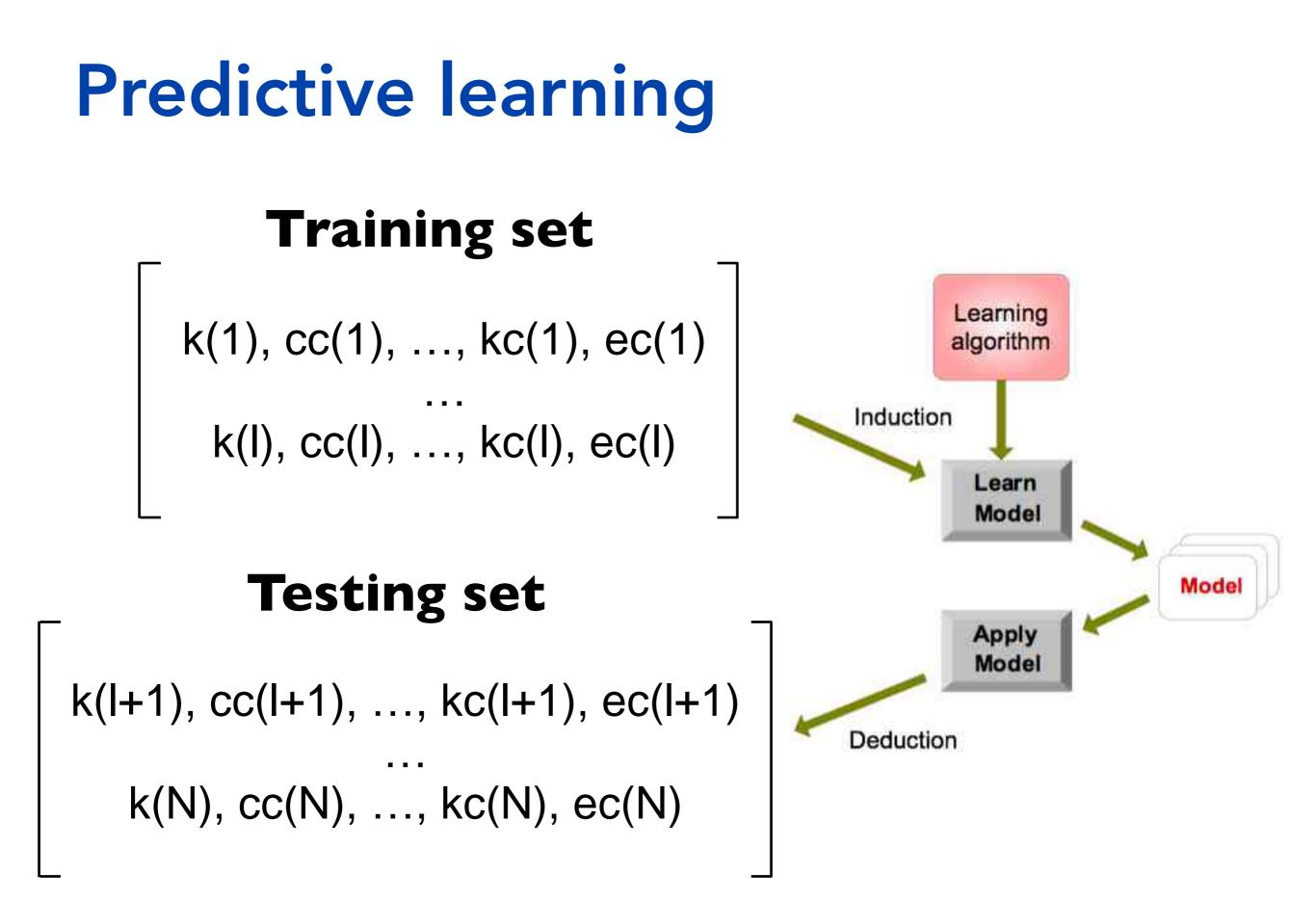
Rodrigues et al., https://arxiv.org/abs/1910.00544

Artificial neural networks



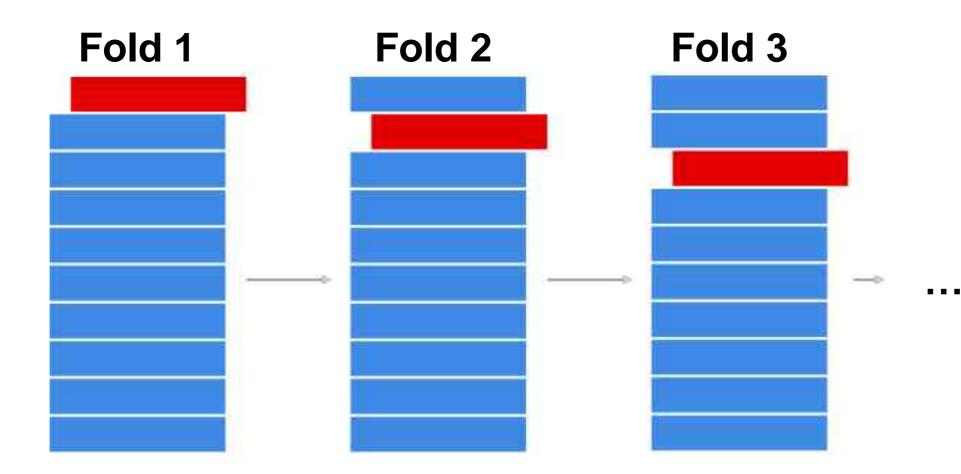
Random forests



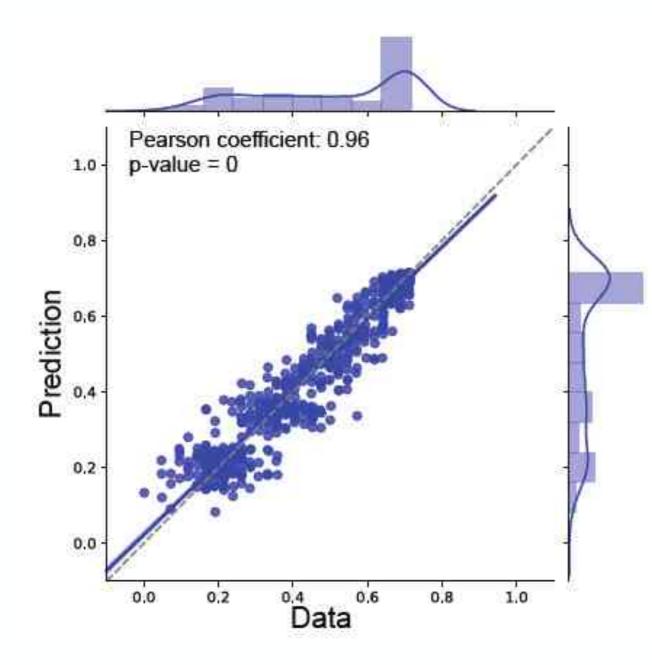


K-fold cross validation

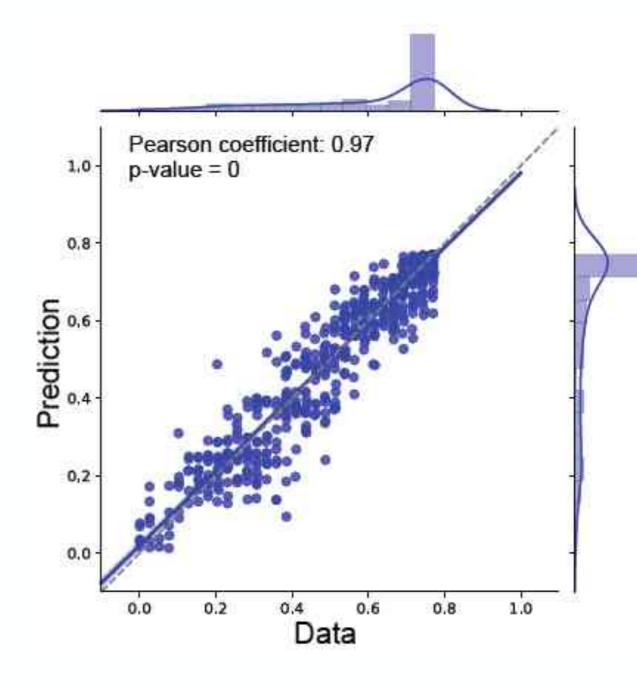
Training data Testing data



Prediction

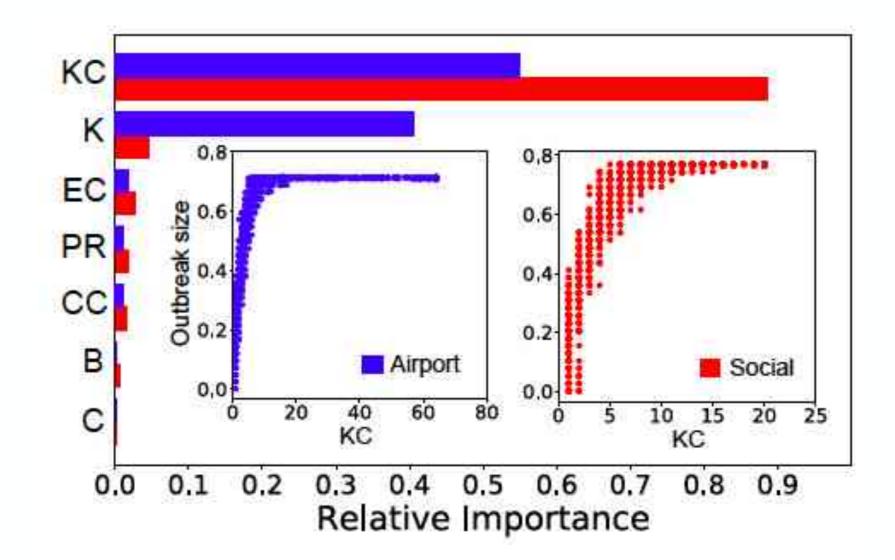


US air transportation network



Hamsterster social network

Features' importance



Our approach solve the problem of the identification of most influential spreaders!

nature physics

Letter Published: 29 August 2010

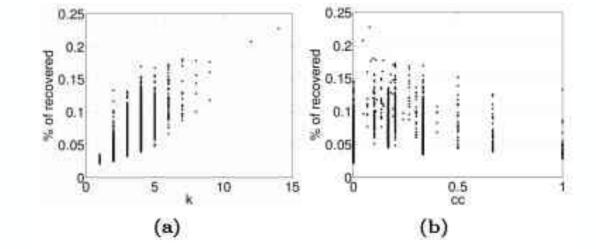
Identification of influential spreaders in complex networks

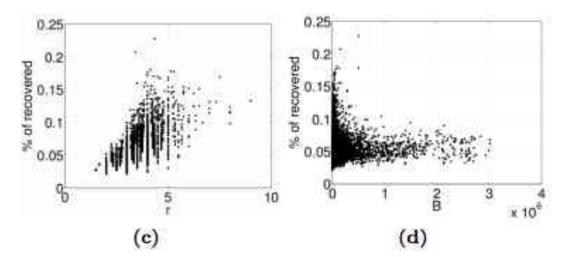
Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene Stanley & Hernán A. Makse

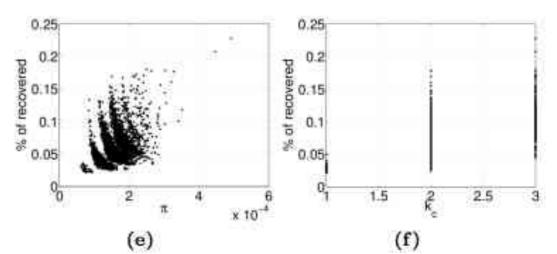
Letter | Published: 01 July 2015

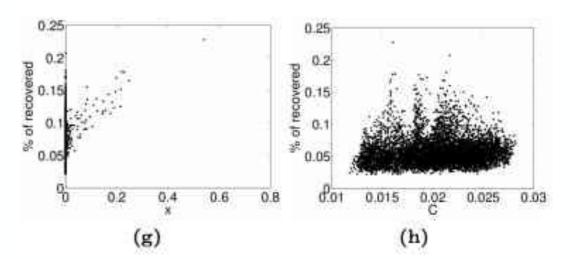
Influence maximization in complex networks through optimal percolation

Flaviano Morone & Hernán A. Makse 🏁

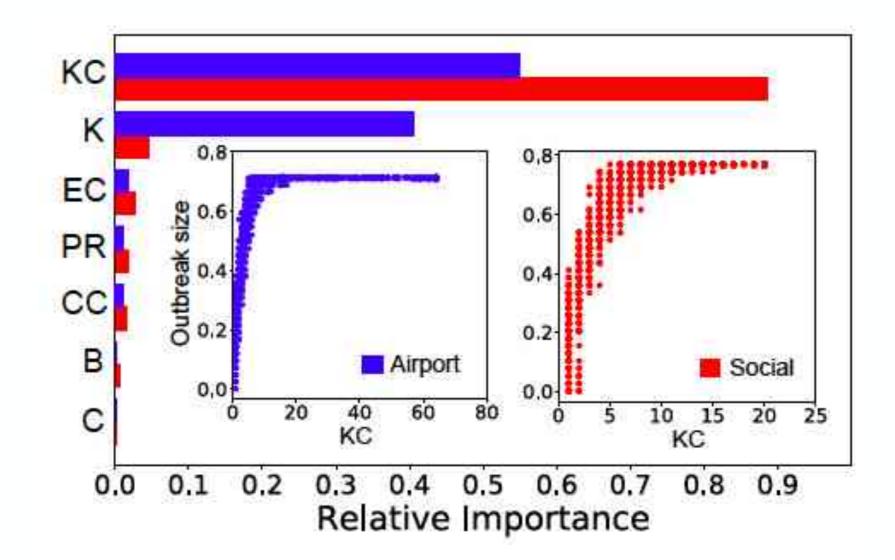








Features' importance



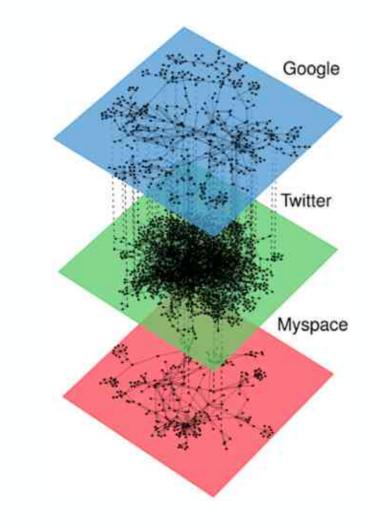
Our approach solve the problem of the identification of most influential spreaders!

Statistics and machine learning are very useful tools to predict dynamical processes from the network structure.

Challenges

- Temporal networks
- Multilayer networks
- Networks with noise
- Heterogeneous dynamics

• A new statistics?



Thank you!

https://sites.icmc.usp.br/francisco

francisco@icmc.usp.br

SPRINGER BRIEFS IN COMPLEXITY

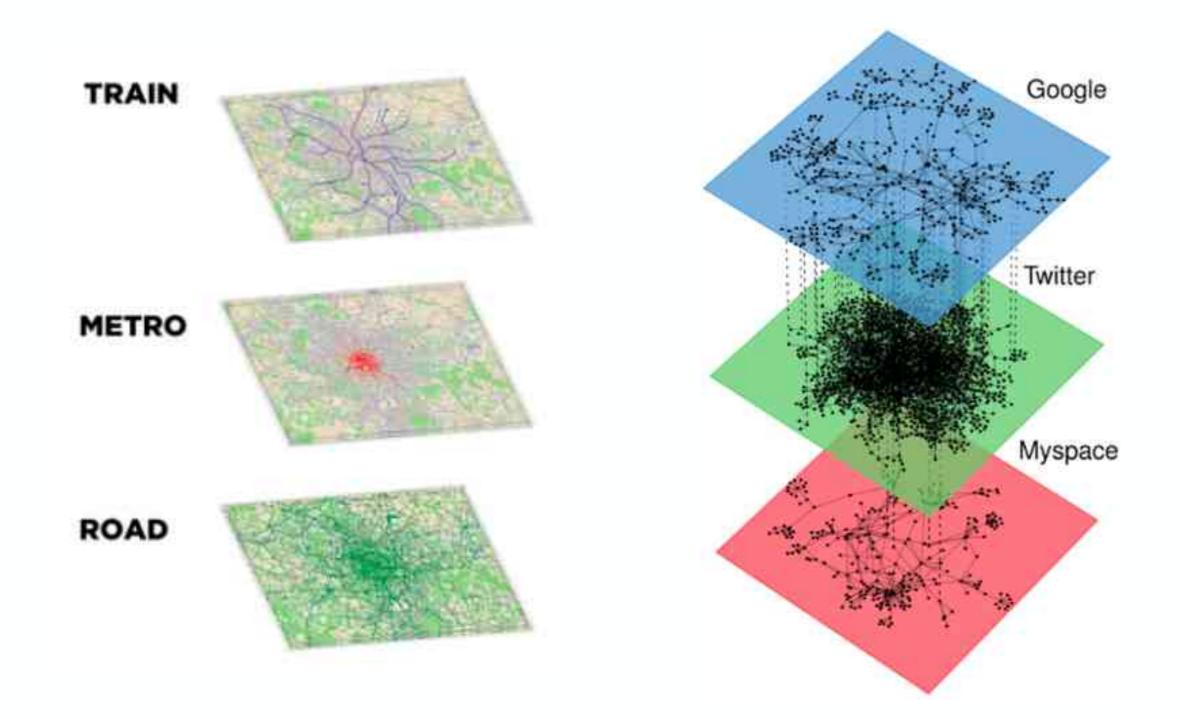
Emanuele Cozzo Guilherme Ferraz de Arruda Francisco Aparecido Rodrigues Yamir Moreno

Multiplex Networks Basic Formalism and Structural Properties

Springer

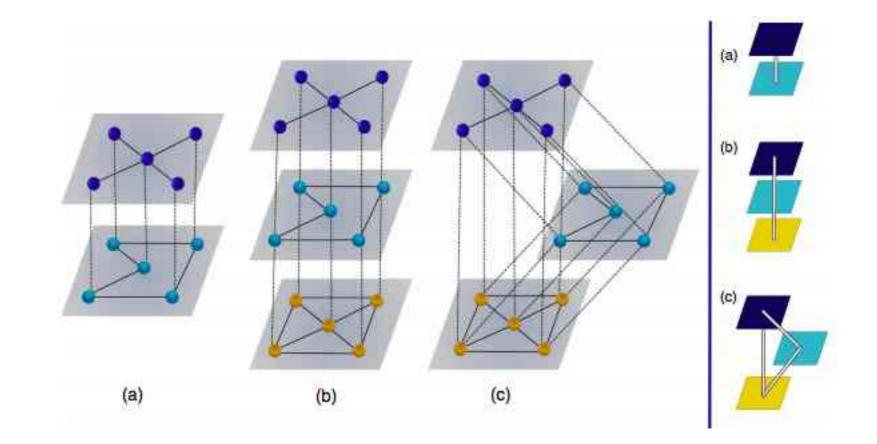
Spreading in Multilayer Networks

Multilayer networks



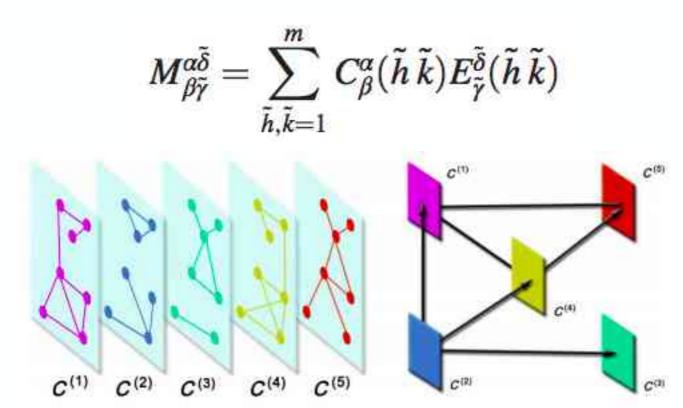
Multilayer networks

• A multilayer network is a network made up of several layers:



Theoretical formulation

• A multilayer network is represented as the fourth-order adjacency tensor $M \in R^{n \times n \times m \times m}$



• The adjacency matrix representing the connections inside layers:

$$M^{\alpha\delta}_{\beta\tilde{\gamma}}E^{\tilde{\gamma}}_{\tilde{\delta}}(\tilde{r}\,\tilde{r}) = C^{\alpha}_{\beta}(\tilde{r}\,\tilde{r}) = A^{\alpha}_{\beta}(\tilde{r})$$

Arruda et al., Physical Review X, 2017

Multilayer networks

• The equations describing the system dynamics:

 $\frac{dX_{\beta\tilde{\delta}}}{dt} = -\mu X_{\beta\tilde{\delta}} + (1 - X_{\beta\tilde{\delta}})\lambda \mathcal{R}_{\beta\tilde{\delta}}^{\alpha\tilde{\gamma}}(\lambda,\eta) X_{\alpha\tilde{\gamma}}$

Arruda et al., Physical Review X, 2017

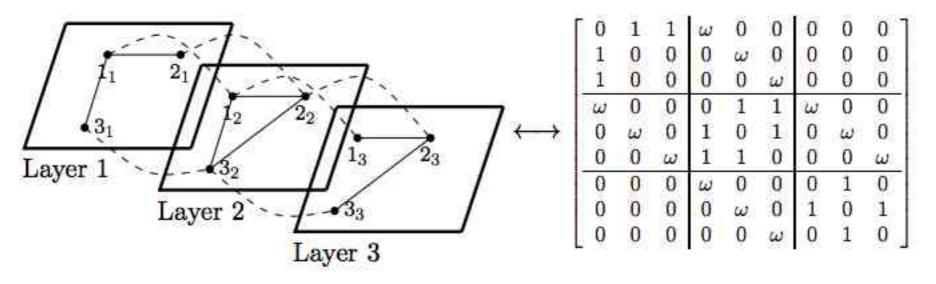
Multilayer networks

• Following the tensorial formulation, we can show:

$$\left(\frac{\mu}{\lambda}\right)_c = \Lambda_1$$

• where Λ_1 is the largest eigenvalue of the supra-adjacency matrix:

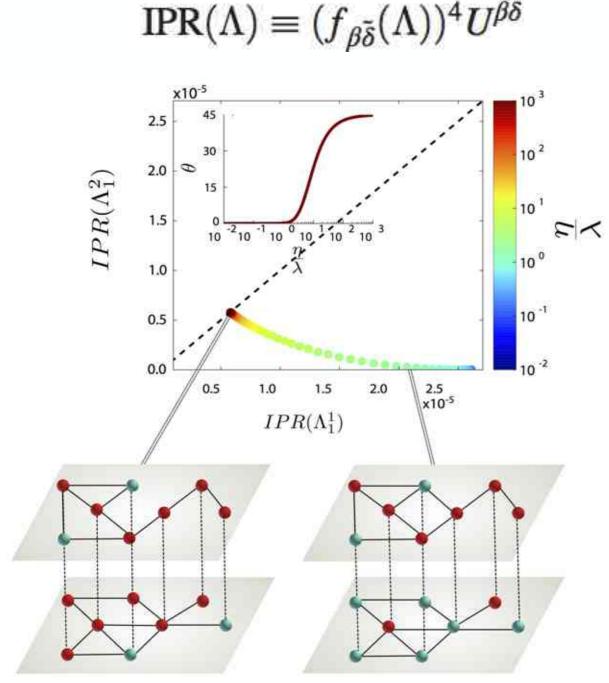
$$\mathcal{R}^{\alpha\tilde{\gamma}}_{\beta\tilde{\delta}}(\lambda,\eta) = M^{\alpha\tilde{\eta}}_{\beta\tilde{\sigma}}E^{\tilde{\sigma}}_{\tilde{\eta}}(\tilde{\gamma}\,\tilde{\delta})\delta^{\tilde{\gamma}}_{\tilde{\delta}} + \frac{\eta}{\lambda}M^{\alpha\tilde{\eta}}_{\beta\tilde{\sigma}}E^{\tilde{\sigma}}_{\tilde{\eta}}(\tilde{\gamma}\,\tilde{\delta})(U^{\tilde{\gamma}}_{\tilde{\delta}} - \delta^{\tilde{\gamma}}_{\tilde{\delta}})$$



Arruda et al., Physical Review X, 2017

Disease localization

• Defining the inverse participation ratio



The localisation of the
disease in a certain layer
means that most of the
spreading is expected to
take place on the nodes
of that layer.

Arruda et al., Physical Review X, 2017

Disease localisation

Outline

- 1. Epidemic spreading
- 2. Networks
- 3. Awareness
- 4. Prediction