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Introduction

I Consider a sequence {Xi}i≥1 of iid r.v. with E(Xi ) = µ and
V (Xi ) = σ2.

I Put Sn = X1 + · · ·+ Xn, then ...

I SLLN: n−1Sn − µ→ 0 a.s.

I CLT:

n1/2σ−1(n−1Sn − µ)
d−→ N(0, 1)

I LIL:

n−1Sn − µ
(2n−1 log log n)1/2

= ζn,

where ζn has its set of a.s. limit point in [−1, 1] and
lim supn |ζn| = 1 a.s.
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Question mark (?)
I Suppose {Sn}n is a martingale and

lim
n

E(S2
n ) =

∞∑
i=1

E(X 2
i ) <∞.

I Then mart. convergence thm guarantees Sn → S a.s.
I Is it possible to mimic the CLT and LIL in this case?

Specically, is it possible to find Bn →∞ such that

Bn(S − Sn)
d−→ N(0, 1) ?

S − Sn

(2B−1
n log logBn)1/2

= ζn ?

I Yes! The answer is given by Heyde in the paper ...
I On central limit and iterated logarithm supplements to the

martingale convergence theorem, J. App. Prob. 14, 758-775
(1977).
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The model

I Introduced by Kumar, Harbola and Lindenberg in the paper
Memory-induced anomalous dynamics in a minimal random
walk model. Phys. Rev. E 90, 022136 (2014).

I It is a Bernoulli RW with unbounded memory and dependent
increments.

I Put S0 = 0. First step:

P(S1 = 1) = s = 1− P(S1 = 0).

I For n ≥ 1 let
Sn+1 = Sn + ηn+1

where ηn+1 ∈ is a r.v.

I The memory consists of the set of random variables ηn′ .The
walker remembers as follows:
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Model and first moment

I At time n + 1 a number n′ ∈ {1, 2, . . . , n} is chosen at
random with probability 1/n.

I Assume

P(ηn+1 = 1|ηn′ = 1) = p and P(ηn+1 = 1|ηn′ = 0) = q

I

P[ηn+1 = 1|Fn] = q + α
Sn
n
, where α = p − q ∈ [−1, 1]. (1)

I Kumar et al. (2014) showed that

E[Sn] =
qn

1− α
+ (s − q

1− α
)

Γ(n + α)

Γ(1 + α)Γ(n)

where Γ is the gamma function.
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Second moment

I If q > 0, then

V [S2
n ] ∼ f (α, q, s)


n2α, if α > 1/2
n log n, if α = 1/2
n if α < 1/2

.

I If q = 0, then

V (S2
n ) ∼ f (p, s)n2p.

I Therefore, Sn presents the so-called anomalous diffusion.
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Anomalous and normal diffusion

I A process {Sn}n is said to show anomalous diffusion if
V (S2

n ) ∼ cn2H for H 6= 1/2 and c a constant.

I If H = 1/2, it exhibits normal diffusion; if H > 1/2, we say Sn
shows superdiffusive behaviour; if H < 1/2, we say Sn
presents subdiffusive behaviour.

I H is called the Hurst exponent. Usually, it is related to long
term correlations.

I Note that sums of i.i.d. random variables always exhibit
normal diffusion.

I Indeed, if {Xi}i≥1 is a seq. of iid r.v. with E(Xi ) = µ and
V (Xi ) = σ2, then

V (S2
n ) = nσ2.
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SLLN

I Thm: Let (Sn)n≥1 be our model. Then

lim
n→∞

Sn − E[Sn]

n
= 0 a.s.

for any value of α ∈ [−1, 1). In other words,

lim
n→∞

Sn
n

=
q

1− α
a.s.

I Remark: The case α = p − q = 1 is not covered by SLLN. In
fact, if p = 1 and q = 0, the walk is trivial since by definition
its dynamics is determined by the first step η1, that is,
ηn = η1 for all n ≥ 1.
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CLT and LIL
I Thm: Consider α ≤ 1/2 and q > 0.

a) If α < 1/2, then

Sn −
q

1− α
n

√
n

d−→ N

(
0,

q(1− p)

(1− α)2(1− 2α)

)
.

b) If α = 1/2, then

Sn − 2qn√
n log n

d−→ N (0, 4q(1− p)) .

I Thm: Consider q > 0 and α ≤ 1/2.
a) If α < 1/2, then

lim sup
n→∞

|Sn −
qn

1− α
|

√
2n log log n

=

√
q(1− p)

(1− α)2(1− 2α)
a.s.

b) If α = 1/2, then

lim sup
n→∞

|Sn − 2qn|√
2n log n log log log n

=
√

4q(1− p) a.s.
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Almost sure convergence

I Thm: Consider q = 0 and 1/2 < p < 1, then

Sn
npΓ(1 + p)−1

− s → M a.s. and in Ld for d ≥ 1,

where M is a non-normal random variable such that

E(M) = 0

E(M2) =
2sΓ(1 + p)2

Γ(1 + 2p)
− s2

E(M3) =
6sΓ(1 + p)3

Γ(1 + 3p)
− 6s2Γ(1 + p)2

Γ(1 + 2p)
+ 2s3

E(M4) =
24sΓ(1 + p)4

Γ(1 + 4p)
− 24s2Γ(1 + p)3

Γ(1 + 3p)
+

12s3Γ(1 + p)2

Γ(1 + 2p)
− 3s4.
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First three moments of Sn
I

E(Sn) = s
Γ(n + α)

Γ(1 + α)Γ(n)
∼ snp

Γ(1 + p)

I

E(S2
n ) =

2sΓ(n + 2p)

Γ(n)Γ(1 + 2p)
− sΓ(n + p)

Γ(n)Γ(1 + p)
.

∼ 2sn2p

Γ(1 + 2p)

I

E(S3
n ) =

6sΓ(n + 3p)

Γ(n)Γ(1 + 3p)
− 6sΓ(n + 2p)

Γ(n)Γ(1 + 2p)
+

sΓ(n + p)

Γ(n)Γ(1 + p)

∼ 6sn3p

Γ(1 + 3p)
.
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4th moment of Sn

I

E(S4
n ) =

24sΓ(n + 4p)

Γ(n)Γ(1 + 4p)
− 36sΓ(n + 3p)

Γ(n)Γ(1 + 3p)

+
14sΓ(n + 2p)

Γ(n)Γ(1 + 2p)
− sΓ(n + p)

Γ(n)Γ(1 + p)

∼ 24sn4p

Γ(1 + 4p)
.

I Remark: Guess E(Sd
n ) ∼ sd!ndp

Γ(1+dp)

I We know Sn/n
p converges a.s. and in Ld because ...
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A non-negative martingale

I Consider q = 0 and Fn = σ(η1, . . . , ηn) . Put

an =
n−1∏
j=1

(
1 +

p

j

)
=

Γ(n + α)

Γ(1 + α)Γ(n)
for n ≥ 2.

I By (1)

E(Sn+1|Fn) = Sn + p
Sn
n

=
(

1 +
p

n

)
Sn.

I Easy to see that Mn = Sn
an

is a martingale such that
E(Mn) = s.

I Mn is non-negative! Doob’s convergence theorem implies
Mn → M a.s. for p ∈ (0, 1).
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Mittag-Leffler distribution

I A r.v. X is Mittag-Leffler distributed with parameter p ∈ [0, 1]
if

E(eλX ) =
∞∑
k=0

λk

Γ(1 + kp)
for λ ∈ R.

I The k−th moment of X is given by

λk

Γ(1 + kp)
.

I Ps: if p = 1, then X ∼ Exp(1).
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Miyazaki and Takei’s insight

I (Sn)k = Sn(Sn − 1) . . . (Sn − k + 1) the k-th factorial moment
of Sn

I Put a
(k)
n =

Γ(n + kp)

Γ(n)Γ(1 + kp)
.

I Thm: Consider s = 1 and p ∈ (0, 1). Then

E ((Sn)k) = k!
k∑

i=1

(−1)k−i
(
k − 1

i − 1

)
a

(i)
n .

I Cor:

X :=
M

Γ(1 + p)
= lim

n

Sn
np

has Mittag-Leffler dist. with parameter p.
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Gaussian fluctuation

I If q = 0, 1/2 < p < 1, then

M −Mn√
np

d−→ N

(
0,

1

Γ(1 + p)

)
as n→∞ and

lim sup
n→∞

|M −Mn|√
2 np log log n

=
1

Γ(1 + p)1/2
a.s.,

I

s2
n =

∞∑
j=n

E(X 2
j ) ∼ 1

an
∼ Γ(1 + p)

np
.

I Here s−1
n plays the role of Bn. ;)
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Percolation connection

I Construct a sequence {Ti} of recursive trees: the first graph
T1 consists of a single vertex labeled 1.

I For each Ti , i ≥ 1, Ti is obtained from Ti−1 by adding a new
vertex labeled i linked to a chosen at random vertex ui from
Ti .

I Perform Bernoulli bond percolation on Tn: each edge of Tn is
independently removed with prob. 1− p.

I Then the size of the cluster C1,n containing the vertex labeled
1 has the same distribution as the position Sn of the r.w.
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Thank you for your attention!
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