Some limit theorems for a minimal random walk
model

Renato Gava - UFSCar - gava@ufscar.br

5 de setembro de 2020

20



Outline

Introduction

The model and its moments

Anomalous and normal diffusion

Results: SLLN, CLT, almost sure covergence and more
Gaussian fluctuation

Connection to percolation on random recursive trees

N

20



Introduction

» Consider a sequence {Xj}i>1 of iid r.v. with E(X;) = p and
V(X)) = o2

3/20



Introduction

» Consider a sequence {Xj}i>1 of iid r.v. with E(X;) = p and
V(X)) = o2
» Put S, = X1 +---+ X, then ...

20



Introduction

» Consider a sequence {Xj}i>1 of iid r.v. with E(X;) = p and
V(X)) = o2

» Put S, = X1 +---+ X, then ...

» SLLN: n71S, — i — 0 ass.

20



Introduction

» Consider a sequence {Xj}i>1 of iid r.v. with E(X;) = p and
V(X)) = o2

» Put S, = X1 +---+ X, then ...

» SLLN: n71S, — 4 — 0 ass.

» CLT:

2071 (n1S, — ) % N(O,1)

20



Introduction

>

Consider a sequence {Xj};>1 of iid r.v. with E(X;) =y and
V(X)) = o2

Put S, = X1 +--- + X, then ...

SLLN: n71S, — 1 — 0 a.s.

CLT:

201 (n1S, — ) < N(0, 1)

LIL:

n1S, —pu _¢
(2n—lloglogn)t/2 >

where ¢, has its set of a.s. limit point in [—1, 1] and
limsup, [(h] =1 a.s.
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Question mark (?)

» Suppose {S,}n is @ martingale and

imE(S?) = > E(X?) < oc.
i=1

v

Then mart. convergence thm guarantees S, — S a.s.

Is it possible to mimic the CLT and LIL in this case?
Specically, is it possible to find B, — oo such that

v

Bn(S — Sn) L N(0,1) 7
S-S, .
(2B; tloglog B,)Y/2 "

v

Yes! The answer is given by Heyde in the paper ...

v

On central limit and iterated logarithm supplements to the
martingale convergence theorem, J. App. Prob. 14, 758-775
(1977).
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The model

Introduced by Kumar, Harbola and Lindenberg in the paper
Memory-induced anomalous dynamics in a minimal random
walk model. Phys. Rev. E 90, 022136 (2014).

It is a Bernoulli RW with unbounded memory and dependent
increments.

Put Sg = 0. First step:

For n>1 let
Sn+1 = Sn + Mna1
where 1,41 € is a r.v.

The memory consists of the set of random variables 7,,.The
walker remembers as follows:
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Model and first moment

» At time n+ 1 a number n € {1,2,...,n} is chosen at
random with probability 1/n.

» Assume

IP)(77n-i-1 = l‘nn’ = 1) =p and P(nn—l-l = 1‘77n’ = O) =q

S
Pnpt1 = 1|Fn] = q—}-a?", where a = p— g € [-1,1]. (1)

» Kumar et al. (2014) showed that

q Mn+ )

qn - )
1—a’'T(14+a)l(n)

E[Sn] = 11—«

+ (s

where [ is the gamma function.
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Second moment

» If g > 0, then

n?e, if a>1/2
V[S?] ~ f(a,q,s){ nlogn, if a=1/2 .
n if a<1/2

» If g =0, then
V(S7) ~ f(p,s)nP.

» Therefore, S, presents the so-called anomalous diffusion.
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Anomalous and normal diffusion

» A process {S,}, is said to show anomalous diffusion if
V(S2) ~ cn®! for H# 1/2 and ¢ a constant.

» If H=1/2, it exhibits normal diffusion; if H > 1/2, we say S,
shows superdiffusive behaviour; if H < 1/2, we say S,
presents subdiffusive behaviour.

> H is called the Hurst exponent. Usually, it is related to long
term correlations.

» Note that sums of i.i.d. random variables always exhibit
normal diffusion.

» Indeed, if {Xj};>1 is a seq. of iid r.v. with E(X;) =y and
V(X;) = o2, then

V(52) = no?.



SLLN

» Thm: Let (S,)n>1 be our model. Then

S

n—o0 n

0 as.

for any value of & € [-1,1). In other words,

im > _ 49
m — =
n—oco N 11—«

a.s.
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SLLN

» Thm: Let (S,)n>1 be our model. Then

lim Sn—E[Sa] _

n—o0 n

0 as.

for any value of a € [-1,1). In other words,

i S q
m — =
n—oco n 11—«

a.s.

» Remark: The case a« = p— g = 1 is not covered by SLLN. In
fact, if p=1 and g = 0, the walk is trivial since by definition
its dynamics is determined by the first step 71, that is,
np =mn1 foralln > 1.



CLT and LIL

» Thm: Consider « <1/2 and g > 0.
a) If @ <1/2, then

S, — q n
"1 _a d q(1 —p)
i N (O’ (1—a>2<1—2a)>'
b) If @« =1/2, then

S, —2qn
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CLT and LIL

» Thm: Consider « <1/2 and g > 0.
a) If « < 1/2, then

q

S,— ———n
" 1-a d q(1—p)
e Gy )
b) If « =1/2, then
22T 4, N (0.49(1 - p)-

» Thm: Consider ¢ > 0 and o < 1/2.
a) If a« < 1/2, then

qn
i [5n 1a|_\/ q(1 - p)
imsup

oo v/2nloglogn |/ (1 —a)?(1—2a)
b) If « =1/2, then
|Sn — 2qn|

limsup =/4q(1—p) as.

n—oo v/2nlog nlogloglogn

a.s.
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Almost sure convergence

» Thm: Consider g =0 and 1/2 < p < 1, then

Sn

m—s%l\/’a.s. and in L9 for d > 1,

where M is a non-normal random variable such that

E(M) =0
2sM(1+p)*
E(M) = r(1+2p) 2
6sT(1+p)°®  65°T(1+p)
EM) = 0530 Faiop) T
E(M) = 24sT(1+p)*  24s°T(1+p)®  128°T(1+p)® 36t

r(1+4p)  T(1+3p) r(1+2p)
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First three moments of S,
>

~ (n+a) snP
E(Sn) = T+ a)(n) " T(T+p)
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First three moments of S,

>

~ (n+a) snP
E(Sn) = T+ a)(n) " T(1+p)
_ 2sT(n+2p) sC(n+p)
E(S5) = F(Mr(1+2p) TF(nF(1+p)
2sn%P
T T+ 2p)

_ 6sT(n+3p)  6sT(n+2p)  s[(n+p)
E(S,) = P (L+3p) (T (L+2p)  T(mI(1+p)
6sn3P

r(1+3p)

~
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4th moment of S,

E(Sp) =

~

24sT(n+4p)  36sl(n+3p)

F(nI(1+4p) T(n)I(1+3p)
14sM(n+2p)  sM(n+p)

F(mr(1+2p) T(M(1+ p)
24sn*P
M(1+4p)
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4th moment of S,

24sT(n+4p)  36sT(n+ 3p)

E(Sn) = F(mMT(1+4p) T(nI(1+3p)

14sT(n+2p)  sT(n+p)

F(mr(L+2p) T(n)l(1+p)
24sn*P

o=

~

» Remark: Guess E(S9) ~ rﬁ’fsl;)
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4th moment of S,

4 24s(n+4p)  36sl(n+ 3p)
E(Sn) = F(M(1+4p) T(n)(1+3p)
14sT(n+2p)  sl(n+p)
Fr(mr(1+2p) (Ml(1+p)

24sn*P
M(1+4p)

~

» Remark: Guess E(S9) ~ riclli’;;)

» We know S,/nP converges a.s. and in L9 because ...
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A non-negative martingale

» Consider g =0 and F, = o(m1,...,1n) . Put

n—1
B P\ _ Mn+ «) o
a”_g<1+j)_r(1+a)r(n)f =2
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A non-negative martingale

» Consider g =0 and F, = o(m1,...,1n) . Put

n—1
B p\  T(n+a)
n= [0 F) - gy o2

> By (1)

Sn
E(Sp1lFa) = Sn+p>2 = (1+2) 5,

» Easy to see that M, = f—: is a martingale such that
E(M,) =s.

» M, is non-negative! Doob’s convergence theorem implies
M, — M as. for p € (0,1).

14 /20



Mittag-Leffler distribution
» Ar.v. X is Mittag-Leffler distributed with parameter p € [0, 1]

if

Z for A € R.
kzol'l—i-kp
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Mittag-Leffler distribution

» Ar.v. X is Mittag-Leffler distributed with parameter p € [0, 1]
if

E(eM) = E ——— for A e R.
(™) = M(1+ kp)

» The k—th moment of X is given by

)\k
r(1+ kp)

» Ps: if p=1, then X ~ Exp(1).
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Miyazaki and Takei's insight

> (Sn)k = Sn(Sn—1)...(Sy — k+ 1) the k-th factorial moment
of S,
F(n+ kp)

F(m(1+ kp)

» Thm: Consider s =1 and p € (0,1). Then

» Put ag,k) =

k
E((Sn)k) = k! Z(_l)k—: <ll(: 1].) 32’)

i=1
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Miyazaki and Takei's insight

> (Sp)k = Sn(Sn—1)...(Sp — k+ 1) the k-th factorial moment
of S,
F(n+ kp)
Put ay) = TP
T T T+ ko)
» Thm: Consider s =1 and p € (0,1). Then

_kIZ(l < 1>a$,").

» Cor:

= M *Iimi
S T(L+p) nonP

has Mittag-Leffler dist. with parameter p.
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Gaussian fluctuation

» If g=0,1/2 < p <1, then

M_M"i>N(O ! )asn—> and
A= "n - 00
VnP r(1+p)

M — M,| B 1

lim sup

= a.s.,
nsoo V2nPloglogn (1 + p)t/2
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A= "n R 00
VnP r(1+p)

M — M,| B 1

limsup

= a.s.,
nsoo V2nPloglogn (1 + p)t/2

- 1 T(1+p)
s=>Y E(X?)~ ——
j=n

—_— Y
an nP
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Gaussian fluctuation

» If g=0,1/2 < p <1, then

M_M"i>N<0 L )asn—> and
A= "n R 00
VnP r(1+p)

M — M,| B 1

limsup

= a.s.,
nsoo V2nPloglogn (1 + p)t/2

oo
Z 1 T(1+p)
. n

j=n

» Here s, ! plays the role of B,,. ;)
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Percolation connection

» Construct a sequence { T;} of recursive trees: the first graph
Ty consists of a single vertex labeled 1.
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18 /20



Percolation connection

» Construct a sequence { T;} of recursive trees: the first graph
Ty consists of a single vertex labeled 1.

» For each T;, i > 1, T; is obtained from T;_; by adding a new
vertex labeled i linked to a chosen at random vertex u; from
T;.

» Perform Bernoulli bond percolation on T,: each edge of T, is
independently removed with prob. 1 — p.

» Then the size of the cluster (i , containing the vertex labeled
1 has the same distribution as the position S, of the r.w.
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Thank you for your attention!
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