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“All polls are wrong.

Some polls are useful”

- C. Joy Wilke, 2020
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Crisis in Election Polls?

4



© 2020 Regents of the University of Michigan

Introduction

• Election polls are a finite population, 
descriptive inference problem

• Well-defined (in space and time) finite 
population U of size N
– For example: Votes in the U.S. Presidential Election 

by April 3, 2020

• Interested in estimating a finite population 
parameter, say a population total:

𝑇𝑦 =

𝑖=1

𝑁

𝑌𝑖
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Introduction

• (Pre-)Election polls are also a two-fold prediction 
problem:

1. With a (responding) sample 𝑠 of size 𝑛 ≪ 𝑁, 
estimate the finite population parameter 𝑇𝑦 by 
predicting the Y-values of the 𝑁 − 𝑛 unobserved 
cases:

𝑇𝑦 =

𝑠

𝑦𝑖 +

𝑈−𝑠

ො𝑦𝑖

2. Predicting the finite population parameter 𝑇𝑦 on 
time t using a sample selected on time t-k, k > 0 
(Forecasting modeling) 
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Inferential approaches
• Design-based inference

▪ Inference based on repeated sampling distribution
▪ Only applicable for sampling error of probability-based 

sampled

▪ Example: Horwitz-Thompson estimator

𝑇𝑦 =

𝑠

𝑦𝑖
𝜋𝑖

𝐸𝜋 𝑇𝑦 = 𝑇𝑦

• Model-based inference
▪ Impose a stochastic model to variable y and evaluate 

estimators based with respect to the model: 𝐸𝑀 𝜃 = 𝜃

• Model-assisted inference
▪ Compromise between design- and model-based

▪ Models used to construct estimators

▪ Repeated sampling distribution used for inference
7
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Total Survey Error

𝑀𝑆𝐸 𝜃 = 𝐸 𝜃 − 𝜃
2
=

𝐵 𝜃
2
+ 𝑉 𝜃
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Total Survey Error - Survey cycle

Source: Groves et al (2011) 9
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Total Survey Error

𝑀𝑆𝐸 መ𝜃 =

𝐵𝐶 መ𝜃
2
+ 𝑉𝐶 መ𝜃 +

𝐵𝑆 መ𝜃
2
+ 𝑉𝑆 መ𝜃 +

𝐵𝑅 መ𝜃
2
+ 𝑉𝑅 መ𝜃 +

𝐵𝑀 መ𝜃
2
+ 𝑉𝑀 መ𝜃 +

...
10

Margin of 
(sampling) 
error

±1.96 𝑉𝑠 𝑝
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Surveys/Polls: How people think it is…

Target population

Sample
𝑦𝑖 ≡ 𝑌𝑖
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Surveys/Polls: How it really is…

Target population

Sampling frame

Sample

Respondents
𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖
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Target population

Population size

Population mean for survey variable 

N

Y Y

=

=

Coverage error
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Target population

Sampling frame

Coverage error
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Target population

Sampling frame

Undercoverage

NC

NC

N

Y

C

C

N

Y

(Under)Coverage bias:

( ) ( )NC
C NC

N
Bias y Y Y

N
= −

Overall population size

Non-covered population size

Non-covered population mean for survey variable 

Covered population size

Covered population mean for survey variable 

NC

NC

C

C

N

N

Y Y

N

Y Y

=

=

=

=

=

Undercoverage rate 1 CN

N

 
= − 
 

Coverage error
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Target population

Sampling frame

NC

NC

N

Y

C

C

N

Y

(Under)Coverage bias:

( ) ( )NC
C NC

N
Bias y Y Y

N
= −

Overall population size

Non-covered population size

Non-covered population mean for survey variable 

Covered population size

Covered population mean for survey variable 

NC

NC

C

C

N

N

Y Y

N

Y Y

=

=

=

=

=

Difference between the 
covered and non-covered 

populations

Undercoverage

Coverage error
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Target population

Sampling frame

Overcoverage

Coverage error
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• Typically dealt with screening

▪ Example: Municipal election 
poll → screen-out 
respondents not registered 
to vote in the municipality

• Problems with Pre-election 
polls:

▪ Voting not mandatory

▪ Abstention

• Solution: Likely voter models

▪ Screening out

▪ Turnout score weighting
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Nonresponse error

• Unit and item nonresponse

18
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Nonresponse error

• Unit and item nonresponse
• Missing mechanisms

▪ Missing Completely at Random (MCAR)
▪ Missing at Random (MAR)
▪ Missing Not at Random (MNAR)

▪ Nonresponse bias
▪ Deterministic

𝐵 ത𝑦𝑅 =
𝑀

𝑁
ത𝑌𝑅 − ത𝑌𝑁𝑅

▪ Stochastic

𝐵 ത𝑦𝑅 ≈
1

ത𝜙

σ 𝑌𝑖 − ത𝑌 𝜙𝑖 − ത𝜙

𝑁 20
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Measurement error

• Simple response error model
𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖

• Simple response process model

• Questionnaire effects
▪ Examples: primacy, recency, order effects 

• Interviewer effects
▪ Example: Social desirability, interviewer characteristics

21

Comprehension

of the question
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Judgment and

estimation

Reporting
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information

Source: Groves et al (2011)
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The Literary Digest

• Accurately predicted 1920, 1924, 
1928 & 1932 presidential 
elections

• 1936 Presidential Poll 
▪ 10 million ballots sent by mail

▪ n ≈ 2,27 million (!!!) respondents 
(RR=24%)

▪ Literary Digest forecast:
▪ Landon 57% vs Roosevelt 43%

▪ Election results:
▪ Landon 39% vs Roosevelt 61%
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The Literary Digest: What did go wrong?

• Coverage bias
– Sampling frame: Magazine subscribers, 

automobile registration lists and 
telephone directory

• Nonresponse bias
– “Low” response rate (24%) and 

differential nonresponse

• Lohr and Brick (2017)
– Weighting adjustment by 1932 election 

vote by state

– Election results predicts Roosevelt as 
winner, but estimates are still biased

• See also Meng (2018) 
– Big Data Paradox: the more the data, 

the surer we fool ourselves
24

Source: Lohr and Brick (2017)
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2016 U.S. Presidential Election Polls
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2016 U.S. Presidential Election Polls

26
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2016 U.S. Presidential Election Polls: Post-mortem

• AAPOR Evaluation of 2016 Election Polls in the U.S. (2017):

▪ National polls generally correct and accurate by historical standards

27
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2016 U.S. Presidential Election Polls: Post-mortem

• AAPOR Evaluation of 2016 Election Polls in the U.S. (2017):

▪ State-level polls showed a competitive, uncertain contest, but 
clearly under-estimated Trump’s support in the Upper Midwest

28
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2016 U.S. Presidential Election Polls: Post-mortem

• AAPOR Evaluation of 2016 Election Polls in the U.S. (2017):

▪ Why polls under-estimated support for Trump?
▪ Real change in vote preference during the final week or so of the campaign

▪ Unadjusted differential nonresponse bias due to overrepresentation of college 
graduates, which was correlated with Clinton support

▪ Shy Trump effect: Little evidence supporting hypothesis

▪ Turnout patterns changed between 2012 and 2016 could have led to mistakes 
in likely voter models 29



© 2020 Regents of the University of Michigan

2020 U.S. Presidential Election Polls?

30
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Other resources

• Summer Institute in Survey Research Techniques
– https://si.isr.umich.edu/

• Michigan Program in Survey Methodology
▪ https://psm.isr.umich.edu/

• International Program in Survey and Data Science
▪ https://survey-data-science.net/

• 2021 AAPOR Conference
▪ https://www.aapor.org/Conference-Events/Annual-

Meeting.aspx 33
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