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Abstract: The statistical analysis of the information generated by medical follow-up is a very important
challenge in the field of personalized medicine. As the evolutionary course of a patient’s disease
progresses, his/her medical follow-up generates more and more information that should be processed
immediately in order to review and update his/her prognosis and treatment. Hence, we focus on this
update process through sequential inference methods for joint models of longitudinal and time-to-event
data from a Bayesian perspective. More specifically, we propose the use of sequential Monte Carlo
(SMC) methods for static parameter joint models with the intention of reducing computational time
in each update of the full Bayesian inferential process. Our proposal is very general and can be easily
applied to most popular joint models approaches. We illustrate the use of the presented sequential
methodology in a joint model with competing risk events for a real scenario involving patients on
mechanical ventilation in intensive care units (ICUs).

Key words: Bayesian analysis, IBIS algorithm, joint models, sequential inference.

Received May 2019; revised February 2020; accepted March 2020

© 2020 SAGE Publications 10.1177/1471082X20916088

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 3



Q Background

Q Sequential learning
Q Sequential methods for Bayesian joint models
Q Application in ICU discharge data

@ Conclusions

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 4



e Background

Danilo Alvares (PUC-Chile)



Motivation - Personalized medi_

Definition (National Academy of Science)

Personalized medicine is the use of genomic, epigenomic, exposure
and other data to define individual patterns of disease, potentially lead-
ing to better individual treatment.
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_ Statistical modeling for personalized medicine

Joint models have recently attracted great attention to the statistical
community and have generated a considerable number of procedures,
especially in the area of biostatistical research.
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Joint models have recently attracted great attention to the statistical
community and have generated a considerable number of procedures,
especially in the area of biostatistical research.

1 Longitudinal analysis avoiding the possible bias due to missing not
at random data, which are modeled through a survival process.

2 Risk of an event considering a time-varying endogenous covariate,
typically modeled through a longitudinal process.
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Statistical modeling for personalized medicine
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longitudinal process and the time-to-event process.
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1 The main advantage of joint models is the connection between the
longitudinal process and the time-to-event process.

N

There are different types of associations between both processes.

w

Full joint probability distribution [Armero et al., 2018]:

f(y,s,b,0)=1(y.s|b.0)f(b]|6)x(8)

y: longitudinal; s: survival; b: random-effects; 6: parameters.

f(y,s| b, 0): conditional joint distribution of (y, s) given b and 6.

f(b | ): conditional distribution of b given 6.

e 7 (0): prior distribution of 6.
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Connection structures for joint models [ANVareSHSOHN

Pattern-mixture models
f(y.s|b.0)=F(y|s.0)f(s|b,0)
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Connection structures for joint models [AlVaTESNS0IAN

Pattern-mixture models
f(y.s|b.0)=F(y|s.0)f(s|b,0)
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f(y,s|b,0)=1f(s|y,0)f(y|b,0)
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Connection structures for joint models [AlVaTESNS0IAN

Shared-parameter models
f(y,s|b,0)=1f(y|b,6)f(s|b,0)

Random-effects models
f(y.s|b,0)="f(y|bgy,0)f(s|bgs),0)
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2 Sequential observations
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Motivation - Dynamic updat_

1 Complex models

Highly time-consuming
2 Sequential observations

When new information of a given patient is collected,
physicians are interested in (quickly) updating the relevant
estimated and/or predicted outcomes

We propose and implement dynamic procedures
based on sequential Monte Carlo methods to make
quick inference and prediction
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Sequential learning SMC methods  IBIS algorithm

Sequential learning

® A key characteristic of the learning process in this type of models
is its dynamic nature.

e This is clear in biomedical studies where data usually come from
individual follow-up over time.
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Sequential learning SMC methods  IBIS algorithm
Bayesian approach

It becomes advisable to use the Bayes’ theorem to update the relevant
information as it is recorded:

(D ]6)=(9)

0| D) =" TRAREE
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Sequential learning SMC methods  IBIS algorithm
Bayesian approach

It becomes advisable to use the Bayes’ theorem to update the relevant
information as it is recorded:

D |0)n(6)

(0| D) = ( m(D) x f(D | 0)7(0)

Practical example: update the inferential procedure combining the
new information D, with learning from the previously available data D

Step 1: (0| Dy) o f(Dy | ) 7(6)
Step 2: m(0 | D1, D) o< (D2 | D1, 0) m(0 | D1)

o (D1, D5 | 0) ()
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Sequential Monte Carlo (SMC) _

Definition

Sequential Monte Carlo methods approximate the target distribution
based on simulations of a set of samples and their respective weights.
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Sequential Monte Carlo (SMC) _

Definition

Sequential Monte Carlo methods approximate the target distribution
based on simulations of a set of samples and their respective weights.

Main context: non-linear non-Gaussian state-space models or hidden
Markov models [Cappé et al., 2005].

Application: artificial intelligence, bioinformatics, computational sci-
ence, economics and mathematical finance, machine learning, signal
and image processing, simultaneous localization and mapping, target
tracking, etc.

Other related names: particle filtering, Monte Carlo filter, survival of
the fittest, sequential imputations, condensation, bootstrap filter, se-
guential importance resampling [Cappé et al., 2007].
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Sequential Monte Carlo scheme

initialising weighting  resampling  perturbing weighting

t=0 t=1 t=1 t=1 t=

Source: C. Montzka, V. R. N. Pauwels, H. J. H. Franssen, X. Han, and H. Vereecken. Multivariate and multiscale data
assimilation in terrestrial systems: a review. Sensors, 12(12): 16291 - 16333, 2012.

D
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SMC methods for models of static parameter N

Where are the SMC methods most commonly applied?
State-space models, where parameters/states are time dependent
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SMC methods for models of static parameterSRug

Where are the SMC methods most commonly applied?
State-space models, where parameters/states are time dependent

Where do we want to apply the SMC methods?
Bayesian joint models, where all parameters and hyperparameters are
static in the sense that they do not change in time

SMC methods for models of static parameters
Iterated Batch Importance Sampling (IBIS) [Chopin, 2002]
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SMC algorithm for models of sta_

lterated Batch Importance Sampling (IBIS) algorithm

Step 1. Draw 8() ~ (8 | Dy) and set W) < 1/K, k=1,...,K.
Step 2. From new data D5, calculate
W4 1 (Dy | Dy, 00) wlb),
w(k)

and normalise the weights w(f) « —— k=1, . K.
> W

if (ESS < Kr) then
Step 3. Draw (8(1),...,6() from (6(1), ..., 6(K)) with probabilities proportional to the
normalised weights (M < K). Update w(") « 1/M, r=1,... M.
Step 4. Draw 6(") from an independent Metropolis-Hastings kernel of invariant distribution
7(0| Dy, Dz), r=1,...,M. Update 8() (), r=1,... M and K « M.

end

If new data available, return to Step 2.
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Step 2. From new data D5, calculate
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if (ESS < Kr) then
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If new data available, return to Step 2.

LIMITATION: standard IBIS does not work for random effects models
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Updating the posterior information SMC-JM algorithm
Updating the inference o

Standard IBIS works
(0 | D1, D2) o< f(Dy, D2 | 0) 7(6)
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Updating the inference on _

Standard IBIS works
(0 | D1, D2) o< f(Dy, D2 | 0) 7(6)
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1 L
zZZf(DhDg]b(/),B)
I=1

where b() is simulated from f (b | 8) for I =1,..., L.
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Updating the inference on _

Standard IBIS works
(0 | D1, D2) o< f(Dy, D2 | 0) 7(6)

Standard IBIS does not work
7(b,0 | D1,D2) x f(D1,D2 | b,0) f(b | 0) 7(0)

f(Dy. D2 | 0) :/f(D1,D2]b,0)f(b\0)db
L
~ %Zf(p1ap2 ’ b(/)79) - ?(D'I?,DZ | 0)
I=1

where b() is simulated from f (b | 8) for I =1,..., L.

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 21



Updating the posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
7(0 | D1, D2) o< f(D1, D2 | 6) 7(6)

Standard IBIS does not work
7(b,0 | D1,D2) x f(D1,D2 | b,0) f(b | 0) 7(0)

f(Dy. D2 | 0) :/f(D1,D2]b,0)f(b\0)db
1 )
~ 72 (D112 | b,6) = 1(D1,D2 | 6)
1=1

where b() is simulated from f (b | 8) for I =1,..., L.
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| Updatingthe posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
7(0 | D1, D2) o< f(D1, D2 | 6) 7(6)

Standard IBIS does not work
7(b,0 | D1,D2) x f(D1,D2 | b,0) f(b | 0) 7(0)

f(Dy. D2 | 0) :/f(D1,D2]b,0)f(b\0)db
L
~ 13 1(D1, Dy [ B0,0) = 7Dy D2 | 0)
I=1

where b() is simulated from f (b | 8) for I =1,..., L.

Integration methods used:
* Monte Carlo
e Quasi-Monte Carlo
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Updating the posterior information SMC-JM algorithm
Updating the inference o

Standard IBIS works
(0 | D1, D>)

Standard IBIS does not work
(b0 | Dy, Dy) o f(Dy, Dz | b,6) £(b | 6) (6)
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Updating the posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
(0 | D1, D>)

Standard IBIS does not work
(b0 | Dy, Dy) o f(Dy, Dz | b,6) £(b | 6) (6)

7(b,0 | D1, D2) = n(b | Dy,D2,0) (6 | D1, D2)
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Updating the posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
(0 | D1, D>)

Standard IBIS does not work
(b0 | Dy, Dy) o f(Dy, Dz | b,6) £(b | 6) (6)

7(b,0 | D1, D2) = n(b | D1,D2,0) w(6 | D1,D2)

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 22



Updating the posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
(0 | D1, D>)

Standard IBIS does not work
(b0 | Dy, Dy) o f(Dy, Dz | b,6) £(b | 6) (6)

m(b,6 | D1,D2) = (b | D1,D2,0) (6 | D1, D2)

7(b | Dy.D2,6) o f(Dy, Dz | b,6) f(b | )
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| Updatingthe posterior information SMC-JM algorithm
Updating the inference on

Standard IBIS works
(0 | D1, D>)

Standard IBIS does not work
(b0 | Dy, Dy) o f(Dy, Dz | b,6) £(b | 6) (6)

m(b,0 | D1,D2) = n(b | D1.D2.0) (6 | D1, D2)

7(b | Dy.D2,6) o f(Dy, Dz | b,6) f(b | )

Metropolis-Hastings algorithm based on posterior samples of 0
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_ Updating the posterior information SMC-JM algorithm
Sequential Monte Carlo algorith

SMC-JM algorithm [Alvares et al., 2020]

Step 1. Draw 8(%) ~ (6 | Dy) and set wK) <« 1/K, k=1,...,K.
Step 2. From new data D5, calculate
W4 7 (Dy | Dy, 0K) wlb),
w(k)

and normalise the weights w(f) « —— k=1, .. K.
> W

if (ESS < Kr) then
Step 3. Draw (6(),...,6M) from (61, ...,8(9)) with probabilities proportional to the
normalised weights (M < K). Update w(") « 1/M, r=1,... M.
Step 4. Draw (") from an independent Metropolis-Hastings kernel of invariant distribution
7(0| Dy, Dz), r=1,...,M. Update 6() (), r=1,... M and K + M.

end

Step 5. Simulate b¥) ~ 7 (b | Dy, D5, 0%)), k=1,...,K.

If new data available, return to Step 2.
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_ Updating the posterior information SMC-JM algorithm
Sequential Monte Carlo algorith

SMC-JM algorithm [Alvares et al., 2020]

Step 1. Draw 8(%) ~ (6 | Dy) and set wK) <« 1/K, k=1,...,K.

Step 2. From new data D, calculate

wk) 7 (D2 \ ’D1.9(k)) w(h),
wk)

and normalise the weights w() « ———,

Y=y Wi

if (ESS < Kr) then
Step 3. Draw (6(),...,6M) from (61, ...,8(9)) with probabilities proportional to the
normalised weights (M < K). Update w(") « 1/M, r=1,... M.
Step 4. Draw (") from an independent Metropolis-Hastings kernel of invariant distribution
7(0| Dy, Dz), r=1,...,M. Update 6() (), r=1,... M and K + M.

end

Step 5. Simulate b¥) ~ 7 (b | Dy, D5, 0%)), k=1,...,K.

If new data available, return to Step 2.
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_ Updating the posterior information SMC-JM algorithm
Sequential Monte Carlo algorith

SMC-JM algorithm [Alvares et al., 2020]

Step 1. Draw 8(%) ~ (6 | Dy) and set wK) <« 1/K, k=1,...,K.
Step 2. From new data D5, calculate
W4 7 (Dy | Dy, 0K) wlb),
w(k)

and normalise the weights w(f) « —— k=1, .. K.
> W

if (ESS < Kr) then
Step 3. Draw (6(),...,6M) from (61, ...,8(9)) with probabilities proportional to the
normalised weights (M < K). Update w(") « 1/M, r=1,... M.
Step 4. Draw 4(") from an independent Metropolis-Hastings kernel of invariant distribution
7(0|Dy,D2), r=1,..., M. Update () « 6(), r=1,... M and K < M.

end

Step 5. Simulate b¥) ~ 7 (b | Dy, D5, 0%)), k=1,...,K.

If new data available, return to Step 2.
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_ Updating the posterior information SMC-JM algorithm
Sequential Monte Carlo algorith

SMC-JM algorithm [Alvares et al., 2020]

Step 1. Draw 8(%) ~ (6 | Dy) and set wK) <« 1/K, k=1,...,K.
Step 2. From new data D5, calculate
W4 7 (Dy | Dy, 0K) wlb),
w(k)

and normalise the weights w(f) « —— k=1, .. K.
> W

if (ESS < Kr) then
Step 3. Draw (6(),...,6M) from (61, ...,8(9)) with probabilities proportional to the
normalised weights (M < K). Update w(") « 1/M, r=1,... M.
Step 4. Draw (") from an independent Metropolis-Hastings kernel of invariant distribution
7(0| Dy, Dz), r=1,...,M. Update 6() (), r=1,... M and K + M.

end

Step 5. Simulate b¥) ~ 7 (b | D1, D5, 0%)), k=1,...,K.

If new data available, return to Step 2.
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0 Application in ICU discharge data

Danilo Alvares (PUC-Chile)



Context Bayesian joint modeling Sequential inference

Context

Mechanical ventilator

lows air, or air with increased
Endotracheal tube goes oxygen, through tubes into
through patient's mouth the patient's airways
and into the windpipe

Nasogastric tube goes
thro patient’s nose -
and into the stomach / /

Nurse periodically
checks the patient.

Source: http://www.dentistryiqg.com/articles/2014/03/boomers-and-the-greatest-generation.html
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
receiving mechanical ventilation in intensive care
units (ICU) during 30 days
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
receiving mechanical ventilation in intensive care
units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
receiving mechanical ventilation in intensive care
units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]

2 139 patients: 97 (69.8%) were discharged alive, 28 (20.1%) died,
and 14 (10.1%) were administratively censored

3 Covariate: Age
4 Biomarker: Sequential Organ Failure Assessment (SOFA) score
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
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units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]

2 139 patients: 97 (69.8%) were discharged alive, 28 (20.1%) died,
and 14 (10.1%) were administratively censored

3 Covariate: Age
#» Biomarker: Sequential Organ Failure Assessment (SOFA) score
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
receiving mechanical ventilation in intensive care
units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]

2 139 patients: 97 (69.8%) were discharged alive, 28 (20.1%) died,
and 14 (10.1%) were administratively censored

3 Covariate: Age
#» Biomarker: Sequential Organ Failure Assessment (SOFA) score

® Six organ systems: respiratory, cardiovascular, renal, coagulation,
hepatic, and neurological systems.
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Analysis of the association between a severity marker
and the events alive discharge and death for patients
receiving mechanical ventilation in intensive care
units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]

2 139 patients: 97 (69.8%) were discharged alive, 28 (20.1%) died,
and 14 (10.1%) were administratively censored

3 Covariate: Age
#» Biomarker: Sequential Organ Failure Assessment (SOFA) score

® Six organ systems: respiratory, cardiovascular, renal, coagulation,
hepatic, and neurological systems.

® QOrgan dysfunction: scores of 0 (normal) to 4 (most abnormal).
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SOFA* = log(SOFA + 1)

B v v W
K AW N \
U
1‘ E‘b 1‘0 d.a;"S 2'“ 2'5 3'“ 1I Elb 1‘0 dﬂ;fb Z‘U 2'5 3'“
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SOFA* = log(SOFA + 1)

B v v W
K AW N \
U
1‘ E‘b 1‘0 d.a;"S 2'“ 2'5 3'“ 1I Elb 1‘0 dﬂ;fb Z‘U 2'5 3'“

Removing observations:
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SOFA* = log(SOFA + 1)

STy
8 AR R ‘MM
" W.m‘.l‘.;l‘l T

Removing observations:

1 Patient 12: 71 years old, discharged alive from the ICU at day 6, and its
SOFA scores, from day 1 to 6, were 9, 9, 9, 4, 2, and 2.

2 Patient 131: 63 years old, died in the ICU at day 5, and its SOFA scores,
from day 1 to 3, were 16, 15, and 15.
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SOFA* = log(SOFA + 1)

7 A
y BT 1100 AN
.. o N
1 5 10 d.a;'ﬁ 20 25 EIU 1 10 d.a;?ﬁ 20 25 30

Removing observations:

1 Patient 12: 71 years old, discharged alive from the ICU at day 6, and its
SOFA scores, from day 1 to 6, were 9, 9, 9, 4,2 anrd2-

2PahenH3463—yea¢s—eld—dred—m4he4@U—a%day%—and—ﬂs—S@FA—see¥es—
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Bayesian joint modeling

Context Bayesian joint modeling Sequential inference

Danilo Alvares (PUC-Chile)

T;,: time to event v for patient /.

v = 1: alive discharge, v = 2: death,and i = 1,...,138.
yi(t): log(SOFA+1) of patient i at time t.

0= (a17a27>‘17)‘271/171/27717'72”6’0"0'070'1)T‘
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Context Bayesian joint modeling Sequential inference

Bayesian joint modeling

T;,: time to event v for patient /.
v = 1: alive discharge, v = 2: death,and i = 1,...,138.
yi(t): log(SOFA+1) of patient i at time t.

L]
L]
°

T
* 0= (a17a27>‘17)‘271/171/2771772’:6’0’00701) .

Competing risks submodel

h/'v(tL | boi, bii, 0) = )\vVvtyv_1 exp [’yvage,- + avovboi + Oé1vb1/l‘]
(boi, b1 | 00, 01) ~ J\/’((O,O)T,diag (03,012))
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Context Bayesian joint modeling Sequential inference

Bayesian joint modeling a

® T,,: time to event v for patient /.
® v = 1: alive discharge, v = 2: death,and i = 1,...,138.
® yi(t): log(SOFA+1) of patient / at time .
* 0= (a17a27)‘17)‘271/171/27717'72”6’0"0070'1)T'
Competing risks submodel
hi (t | boi, bii, 8) = X t” ™" exp [%age,- + aovboi + Oc1vb1/l‘]
(boi, b1 | 00, 01) ~ ./\/'((O,O)T,diag (03,012))
Longitudinal submodel
(vi(t) | boi, b1, 0) ~ N (pi(t), 0®)
wi(t) = Bo + boi + (B1 + by t + Bage;
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_ Context Bayesian joint modeling Sequential inference

Bayesian joint modeling an_

T;,: time to event v for patient /.

v = 1: alive discharge, v = 2: death,and i = 1,...,138.
yi(t): log(SOFA+1) of patient i at time t.

0= (a17a2))‘17)‘271/171/27717'72”6’0"0'070'1)T‘

Competing risks submodel
h/'v(tL | boi, byj, 0) = )\vVvtyv_1 exp [’yvage,- + agvboi + Oé1vb1/t]
(boi, b1 | 00, 01) ~ J\/’((O,O)T,diag (ag,crf))

Longitudinal submodel
(yi(t) | boi, brj, 0) ~ N (pi(t),0?)
wi(t) = Bo + boi + (B1 + byi) t + Beage;

Prior distribution
7T(ao1) = TI'(Oéog) = 71‘(0(11) = 7T(Oé12) - N(O, 1000)
m(log(A1)) = m(log(A2)) = A(0, 1000)
w(v1) = w(r2) = G(0.01,0.01)
7(1) = m(12) = (0, 1000)
m(Bo) = m(B1) = 7(B2) = N(0,1000)
(o) = m(o0) = w(o1) = U(0,100)
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Bayesian joint modeling and preliminary teSUSHN

[Z] Mean SD 2.5% 50% 97.5% | P(->0|D)
Competing risks process - Alive

Y 0.001 0.007 -0.012 0.001 0.016 0.563
apr | -0.208 0.323 -0.846 -0.208  0.468 0.259
aqq | -1.012  0.256 -1.582 -0.998 -0.549 0.000

v 1.525 0.151 1.247 1.516 1.834 —
A 0.015 0.009 0.004 0.013 0.040 —
Competing risks process - Death

v | 0022 0017 -0.009 0021 0.058 0.917
ap2 | 3.367 0948 1756 3.307  5.456 1.000
ap | 0745 0472 -0173 0750  1.605 0.943

Vo 1172 0250 0.740 1.157 1.733 —
A2 0.002 0.004 0.000 0.001 0.012 —
Longitudinal process - SOFA*

Bo 1.844 0.155  1.537 1.844 2141 1.000
B -0.086 0.009 -0.105 -0.086 -0.067 0.000
B2 0.005 0.002 0.000 0.005 0.009 0.973

o 0.311 0.008 0.295 0.310 0.328 —
oo 0.407 0.082 0.349 0.405 0.476 —
o1 0.067 0.008 0.052 0.066  0.084 —
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Context Bayesian joint modeling Sequential inference

Conditional cumulative i

P(TI S t) 51' =V | YI71:n,v+ga TI Z ti,n/+ga bfve)a t> ti,n,'-&-g
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Context Bayesian joint modeling Sequential inference

Conditional cumulative i

P(Ti<t,0; =V |¥rmrg Ti 2 tin+g: 0i,0), t>tinig
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Context Bayesian joint modeling Sequential inference

Conditional cumulative i

P(T; < t,6i = v | ¥rmrg Ti > tin+g, bi, 0)
- iv(t | TI Z ti,n,+ga bive)a t> tf,”H’Q
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Context Bayesian joint modeling Sequential inference

Conditional cumulative in

P(TI < t75i =V | YirmTg TI > ti,n,'—t-g,bi,e)
- iv(lL | T/ > ti,n,+gab170)a t> t/',n,-+g

Bayesian approach:
E(Fu (t] T > tiniq b1, 0) | D) = /F (t| T > bineg bi.6) w (bi,6 | DY, D) d(b;,6),

where D/g - [yi,n,-+1:n,-+97 (ti,ni+g: 51)] T-

E(Fu (t] T > tinrg, by, 6) LZFN( Ti > tinsg, b, 61),

where b and 6 are drawn from = (b;, 6 | DY, D), for = 1,...,Land v = 1,2.
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Context Bayesian joint modeling Sequential inference

- @@ @@
Individual estimation of the dynamic conditionaNCIENN

Patient 12
Follow-up: day=3 -
18- 71005
16- =
. . . 147 —m?sg
SMC for Bayesian joint models <12 =
%12_07070 —0502.
Step 1. INITIALIZING. Ao E_
Step 2. WEIGHTING. 4] g
if (ESS < K7) then o T 000
Step 3. RESAMPLING. T2 fia; reEen
Step 4. MOVE. i
end P Patient 131
Follow-up: day = NA
Step 5. PERSONALIZE. 15— 100
Update the conditional CIF. 9] -
If new data available, return to Step 2. 12" g
ol -050 2,
7 -
4- -0256n
0- I s s s S I-DDD%
12 3456 78 910
day
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Context Bayesian joint modeling Sequential inference

- @@ @@
Individual estimation of the dynamic conditionaNCIENN

Patient 12
Follow-up: day=3 -
18- 71005
16- =
. — 14- —m?sg
SMC for Bayesian joint models <12 =
%12_07070 —0502.
Step 1. INITIALIZING. Ao E_
Step 2. WEIGHTING. 4] g
if (ESS < K7) then o T 000
Step 3. RESAMPLING. T2 fia; reEen
Step 4. MOVE. i
end P Patient 131
Follow-up: day = NA
Step 5. PERSONALIZE. 15— 100
Update the conditional CIF. 9] -
If new data available, return to Step 2. 12" g
ol -050 2,
7 -
4- -0256n
0- I s s s S I-DDD%
12 3456 78 910
day
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Context Bayesian joint modeling Sequential inference

- @@ @@
Individual estimation of the dynamic conditionaNCIENN

Patient 12
Follow-up: day=4 -
18- : 71005
167 : =]
e AT ] : 0758,
SMC for Bayesian joint models <12 : =
%13_0’0’1 : 050,
Step 1. INITIALIZING. Ao E_
Step 2. WEIGHTING. 4] * e
if (ESS < K7) then b o
Step 3. RESAMPLING. T2 fia; reEen
Step 4. MOVE. .
end Patient 131
Follow-up: day=1
Step 5. PERSONALIZE. 15 E—— 100
Update the conditional CIF. Y -
If new data available, return to Step 2. 12" g
ol -050 2,
P 5.
4- -0256n
0- S I i — S | I-DDD%
12 3456 78 910
day
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Context Bayesian joint modeling Sequential inference

-
Individual estimation of the dynamic conditionalCIENN

Patient 12
Follow-up: day=4 -
18- : 71005
16] : =]
e AT ] : 0758,
SMC for Bayesian joint models <12 : =
%13_0’0’1 : 050,
Step 1. INITIALIZING. Ao E_
Step 2. WEIGHTING. 4] 4 e
if (ESS < K7) then b o
Step 3. RESAMPLING. T2 fia; reEen
Step 4. MOVE. .
end Patient 131
Follow-up: day=1
Step 5. PERSONALIZE. 15 E—— 100
Update the conditional CIF. Y -
If new data available, return to Step 2. 12" g
ol -050 2,
7 -
4- -0256n
0- S I i — S | I-DDD%
12 3456 78 910
day
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Context Bayesian joint modeling Sequential inference

- @@ @@
Individual estimation of the dynamic conditionaNCIENN

SMC for Bayesian joint models

Step 1. INITIALIZING.
Step 2. WEIGHTING.

if (ESS < Kr) then

Step 3. RESAMPLING.
Step 4. MOVE.

end

Step 5. PERSONALIZE.

Update the conditional CIF.

If new data available, return to Step 2.

Danilo Alvares (PUC-Chile)

Patient 12

Follow-up: day=4

Lr]

13- : 10E
16- : =
14- -
075

<2 =
%13:0’0’1 0507,
7 g 2
6- s o,
2 e RS -0255.
2- = 5
0- 000§

12346678910
day

Patient 131
Follow-up: day=1

L]
18- -1005
16- & =4
14- p—
0758
i 2.
Lo 3
E ] -0500,
8 B
N 5 = e
i -g25@l
: - g
2- Pt 7]
D_\ 1 1 1 I 1 1 1 I _DDD(D

12345678910

day
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Context Bayesian joint modeling Sequential inference

-
Individual estimation of the dynamic conditionalCIENN

SMC for Bayesian joint models

Step 1. INITIALIZING.
Step 2. WEIGHTING.

if (ESS < Kr) then

Step 3. RESAMPLING.
Step 4. MOVE.

end

Step 5. PERSONALIZE.

Update the conditional CIF.

If new data available, return to Step 2.

Danilo Alvares (PUC-Chile)

Patient 12

Follow-up: day=4

Lr]

13- : 10E
16- : =
14- -
075
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7 g 2
6- s o,
2 e RS -0255.
2- = 5
0- 000§

12346678910
day

Patient 131
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Context Bayesian joint modeling Sequential inference

-
Individual estimation of the dynamic conditionalCIENN
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Updating the posterior information .

0 Initial SMC-JM JAGS
Mean SD Mean SD Mean SD
Competing risks process - Alive
ap1 -0.203 0.323 | -0.221 0.313 | -0.222 0.316
a1 -1.012 0.256 | -0.998 0.253 | -0.999 0.255
A1 0.015 0.009 0.015 0.009 0.015 0.009
2 1.525 0.151 1.538 0.146 1.537 0.151
Y1 0.001  0.007 0.002 0.007 0.002 0.007
Competing risks process - Death
a2 3.367 0.948 | 3.272 0.858 | 3.278 0.861
12 0.745 0472 0.717  0.453 0.716  0.454
A2 0.002 0.004 | 0.002 0.003 | 0.002 0.004
Vo 1.172  0.250 1.176  0.248 1.178 0.249
Yo 0.022 0.017 0.022 0.016 0.022 0.017
Longitudinal process - SOFA*
Bo 1.844 0.155 1.851 0.149 1.851 0.154
B -0.086 0.009 | -0.088 0.009 | -0.088 0.009
B2 0.005 0.002 | 0.005 0.002 | 0.005 0.002
o 0.311  0.008 0.311  0.007 0.311  0.008
oo 0.407 0.032 | 0.410 0.031 0.410  0.031
o1 0.067 0.008 0.069 0.009 0.068 0.009
Time (min) 867 121 869
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Outline

e Conclusions
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Conclusions

SMC methods in Bayesian joint models

e |Improve statistical efficiency by using all the data simultaneously in
a single model.

e “Complete” inference and quick update.
e Adaptations involving analytically intractable integrals.

e |ncorporation of the step of update of the random effects.
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SMC methods in Bayesian joint models

e |Improve statistical efficiency by using all the data simultaneously in
a single model.

e “Complete” inference and quick update.
e Adaptations involving analytically intractable integrals.

e |ncorporation of the step of update of the random effects.

ICU discharge data:

¢ [ndividual estimation of the dynamic CIF of each event.

e Reduction of 867 minutes to 121 minutes.
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Thank you for your attention
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