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Statistical modeling for personalized medicine

Motivation - Personalized medicine

Definition (National Academy of Science)
Personalized medicine is the use of genomic, epigenomic, exposure
and other data to define individual patterns of disease, potentially lead-
ing to better individual treatment.

Common data structures:

1 Longitudinal data.

2 Time-to-event data.
3 Joint model for longitudinal and time-to-event data.
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Statistical modeling for personalized medicine

Joint models for longitudinal and time-to-event data

Joint models have recently attracted great attention to the statistical
community and have generated a considerable number of procedures,
especially in the area of biostatistical research.

1 Longitudinal analysis avoiding the possible bias due to missing not
at random data, which are modeled through a survival process.

2 Risk of an event considering a time-varying endogenous covariate,
typically modeled through a longitudinal process.
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Statistical modeling for personalized medicine

Bayesian joint models

1 The main advantage of joint models is the connection between the
longitudinal process and the time-to-event process.

2 There are different types of associations between both processes.

3 Full joint probability distribution [Armero et al., 2018]:

f (y ,s,b,θ) = f (y ,s | b,θ) f (b | θ)π (θ)

• y : longitudinal; s: survival; b: random-effects; θ: parameters.

• f (y ,s | b,θ): conditional joint distribution of (y ,s) given b and θ.

• f (b | θ): conditional distribution of b given θ.

• π (θ): prior distribution of θ.

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 9



Statistical modeling for personalized medicine

Bayesian joint models

1 The main advantage of joint models is the connection between the
longitudinal process and the time-to-event process.

2 There are different types of associations between both processes.

3 Full joint probability distribution [Armero et al., 2018]:

f (y ,s,b,θ) = f (y ,s | b,θ) f (b | θ)π (θ)

• y : longitudinal; s: survival; b: random-effects; θ: parameters.

• f (y ,s | b,θ): conditional joint distribution of (y ,s) given b and θ.

• f (b | θ): conditional distribution of b given θ.

• π (θ): prior distribution of θ.

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 9



Statistical modeling for personalized medicine

Bayesian joint models

1 The main advantage of joint models is the connection between the
longitudinal process and the time-to-event process.

2 There are different types of associations between both processes.

3 Full joint probability distribution [Armero et al., 2018]:

f (y ,s,b,θ) = f (y ,s | b,θ) f (b | θ)π (θ)

• y : longitudinal; s: survival; b: random-effects; θ: parameters.

• f (y ,s | b,θ): conditional joint distribution of (y ,s) given b and θ.

• f (b | θ): conditional distribution of b given θ.

• π (θ): prior distribution of θ.

Danilo Alvares (PUC-Chile) Sequential Monte Carlo methods in Bayesian joint models 9



Statistical modeling for personalized medicine

Connection structures for joint models [Alvares, 2017]

Pattern-mixture models
f (y ,s | b,θ) = f (y | s,θ) f (s | b,θ)

Selection models
f (y ,s | b,θ) = f (s | y ,θ) f (y | b,θ)
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Statistical modeling for personalized medicine

Motivation - Dynamic update

1 Complex models

2 Sequential observations

 Highly time-consuming

When new information of a given patient is collected,
physicians are interested in (quickly) updating the relevant

estimated and/or predicted outcomes

We propose and implement dynamic procedures
based on sequential Monte Carlo methods to make

quick inference and prediction
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Sequential learning SMC methods IBIS algorithm
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Sequential learning SMC methods IBIS algorithm

Sequential learning

• A key characteristic of the learning process in this type of models
is its dynamic nature.
• This is clear in biomedical studies where data usually come from

individual follow-up over time.

Situations in which sequential methods are usually required:
1 Big (sequential) data
2 Complex models with sequential data
3 Big (sequential) data + Complex models
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Sequential learning SMC methods IBIS algorithm

Bayesian approach

It becomes advisable to use the Bayes’ theorem to update the relevant
information as it is recorded:

π(θ | D) = f (D | θ)π(θ)
m(D)

∝ f (D | θ)π(θ)

Practical example: update the inferential procedure combining the
new information D2 with learning from the previously available data D1

Step 1: π(θ | D1) ∝ f (D1 | θ)π(θ)

Step 2: π(θ | D1,D2) ∝ f (D2 | D1, θ)π(θ | D1)
∝ f (D1,D2 | θ)π(θ)
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Sequential learning SMC methods IBIS algorithm

Sequential Monte Carlo (SMC) methods

Definition
Sequential Monte Carlo methods approximate the target distribution
based on simulations of a set of samples and their respective weights.

Main context: non-linear non-Gaussian state-space models or hidden
Markov models [Cappé et al., 2005].

Application: artificial intelligence, bioinformatics, computational sci-
ence, economics and mathematical finance, machine learning, signal
and image processing, simultaneous localization and mapping, target
tracking, etc.

Other related names: particle filtering, Monte Carlo filter, survival of
the fittest, sequential imputations, condensation, bootstrap filter, se-
quential importance resampling [Cappé et al., 2007].
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Sequential learning SMC methods IBIS algorithm

Sequential Monte Carlo scheme

Source: C. Montzka, V. R. N. Pauwels, H. J. H. Franssen, X. Han, and H. Vereecken. Multivariate and multiscale data
assimilation in terrestrial systems: a review. Sensors, 12(12): 16291 - 16333, 2012.
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Sequential learning SMC methods IBIS algorithm

SMC methods for models of static parameters

Where are the SMC methods most commonly applied?
State-space models, where parameters/states are time dependent

Where do we want to apply the SMC methods?
Bayesian joint models, where all parameters and hyperparameters are

static in the sense that they do not change in time

SMC methods for models of static parameters

Iterated Batch Importance Sampling (IBIS) [Chopin, 2002]
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Sequential learning SMC methods IBIS algorithm

SMC algorithm for models of static parameters

Iterated Batch Importance Sampling (IBIS) algorithm
Step 1. Draw θ(k) ∼ π(θ | D1) and set w (k) ← 1/K , k = 1, . . . ,K .

Step 2. From new data D2, calculate

w̃ (k) ← f
(
D2 | D1,θ

(k)
)

w (k),

and normalise the weights w (k) ←
w̃ (k)∑K
l=1 w̃ (l)

, k = 1, . . . ,K .

if (ESS < KT ) then

Step 3. Draw
(
θ̃(1), . . . , θ̃(M)

)
from

(
θ(1), . . . ,θ(K )

)
with probabilities proportional to the

normalised weights (M ≤ K ). Update w (r) ← 1/M, r = 1, . . . ,M.

Step 4. Draw θ̌(r) from an independent Metropolis-Hastings kernel of invariant distribution
π (θ | D1,D2), r = 1, . . . ,M. Update θ(r) ← θ̌(r), r = 1, . . . ,M and K ← M.

end

If new data available, return to Step 2.

LIMITATION: standard IBIS does not work for random effects models
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Updating the posterior information SMC-JM algorithm
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Updating the posterior information SMC-JM algorithm

Updating the inference on θ

Standard IBIS works
π(θ | D1,D2) ∝ f (D1,D2 | θ)π(θ)

Standard IBIS does not work
π(b,θ | D1,D2) ∝ f (D1,D2 | b,θ) f (b | θ)π(θ)

f
(
D1,D2 | θ

)
=

∫
f
(
D1,D2 | b,θ

)
f (b | θ)db

≈ 1
L

L∑
l=1

f
(
D1,D2 | b(l),θ

)
= f̂

(
D1,D2 | θ

)
where b(l) is simulated from f (b | θ) for l = 1, . . . ,L.

Integration methods used:
• Monte Carlo
• Quasi-Monte Carlo
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Updating the posterior information SMC-JM algorithm

Sequential Monte Carlo algorithm for joint models

SMC-JM algorithm [Alvares et al., 2020]
Step 1. Draw θ(k) ∼ π(θ | D1) and set w (k) ← 1/K , k = 1, . . . ,K .

Step 2. From new data D2, calculate

w̃ (k) ← f̂
(
D2 | D1,θ

(k)
)

w (k),

and normalise the weights w (k) ←
w̃ (k)∑K
l=1 w̃ (l)

, k = 1, . . . ,K .

if (ESS < KT ) then

Step 3. Draw
(
θ̃(1), . . . , θ̃(M)

)
from

(
θ(1), . . . ,θ(K )

)
with probabilities proportional to the

normalised weights (M ≤ K ). Update w (r) ← 1/M, r = 1, . . . ,M.

Step 4. Draw θ̌(r) from an independent Metropolis-Hastings kernel of invariant distribution
π (θ | D1,D2), r = 1, . . . ,M. Update θ(r) ← θ̌(r), r = 1, . . . ,M and K ← M.

end

Step 5. Simulate b(k) ∼ π
(
b | D1,D2,θ

(k)
)
, k = 1, . . . ,K .

If new data available, return to Step 2.
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Context Bayesian joint modeling Sequential inference
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Context Bayesian joint modeling Sequential inference

Context

Source: http://www.dentistryiq.com/articles/2014/03/boomers-and-the-greatest-generation.html
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Context Bayesian joint modeling Sequential inference

Goal

Analysis of the association between a severity marker
and the events alive discharge and death for patients

receiving mechanical ventilation in intensive care
units (ICU) during 30 days

Information:
1 Based on the work of [Rué et al., 2017]
2 139 patients: 97 (69.8%) were discharged alive, 28 (20.1%) died,

and 14 (10.1%) were administratively censored
3 Covariate: Age

4 Biomarker: Sequential Organ Failure Assessment (SOFA) score
• Six organ systems: respiratory, cardiovascular, renal, coagulation,

hepatic, and neurological systems.
• Organ dysfunction: scores of 0 (normal) to 4 (most abnormal).
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Context Bayesian joint modeling Sequential inference

Data description

SOFA∗ = log(SOFA + 1)

Removing observations:

1 Patient 12: 71 years old, discharged alive from the ICU at day 6, and its
SOFA scores, from day 1 to 6, were 9, 9, 9,

2 :
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Context Bayesian joint modeling Sequential inference

Bayesian joint modeling and preliminary results
• Tiv : time to event v for patient i .
• v = 1: alive discharge, v = 2: death, and i = 1, . . . , 138.
• yi (t): log(SOFA+1) of patient i at time t .
• θ = (α1,α2, λ1, λ2, ν1, ν2, γ1, γ2,β, σ, σ0, σ1)>.

Competing risks submodel

hiv
(
t | b0i , b1i ,θ

)
= λvνv tνv−1 exp

[
γv agei + α0v b0i + α1v b1i t

]
(
b0i , b1i | σ0, σ1

)
∼ N

((
0, 0
)>
, diag

(
σ2

0 , σ
2
1
) )

Longitudinal submodel(
yi(t) | b0i , b1i ,θ

)
∼ N

(
µi(t), σ2)

µi(t) = β0 + b0i + (β1 + b1i) t + β2agei

Prior distribution
π(α01) = π(α02) = π(α11) = π(α12) = N (0, 1000)

π(log(λ1)) = π(log(λ2)) = N (0, 1000)
π(ν1) = π(ν2) = G(0.01, 0.01)
π(γ1) = π(γ2) = N (0, 1000)

π(β0) = π(β1) = π(β2) = N (0, 1000)
π(σ) = π(σ0) = π(σ1) = U(0, 100)
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Context Bayesian joint modeling Sequential inference

Bayesian joint modeling and preliminary results

θ Mean SD 2.5% 50% 97.5% P(· > 0 | D)
Competing risks process - Alive

γ1 0.001 0.007 -0.012 0.001 0.016 0.563
α01 -0.203 0.323 -0.846 -0.208 0.468 0.259
α11 -1.012 0.256 -1.582 -0.998 -0.549 0.000
ν1 1.525 0.151 1.247 1.516 1.834 —
λ1 0.015 0.009 0.004 0.013 0.040 —

Competing risks process - Death
γ2 0.022 0.017 -0.009 0.021 0.058 0.917
α02 3.367 0.948 1.756 3.307 5.456 1.000
α12 0.745 0.472 -0.173 0.750 1.605 0.943
ν2 1.172 0.250 0.740 1.157 1.733 —
λ2 0.002 0.004 0.000 0.001 0.012 —

Longitudinal process - SOFA∗
β0 1.844 0.155 1.537 1.844 2.141 1.000
β1 -0.086 0.009 -0.105 -0.086 -0.067 0.000
β2 0.005 0.002 0.000 0.005 0.009 0.973
σ 0.311 0.008 0.295 0.310 0.328 —
σ0 0.407 0.032 0.349 0.405 0.476 —
σ1 0.067 0.008 0.052 0.066 0.084 —
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Context Bayesian joint modeling Sequential inference

Conditional cumulative incidence function (CIF)

P(Ti ≤ t , δi = v | yi,1:ni +g ,Ti ≥ ti,ni +g ,bi ,θ), t > ti,ni +g

Bayesian approach:

E
(
Fiv
(
t | Ti ≥ ti,ni +g ,bi ,θ

)
| D
)
=

∫
Fiv
(
t | Ti ≥ ti,ni +g ,bi ,θ

)
π
(
bi ,θ | Dg

i ,D
)

d(bi ,θ),

where Dg
i =

[
yi,ni +1:ni +g , (ti,ni +g , δi)

]>.

E
(
Fiv
(
t | Ti ≥ ti,ni +g ,bi ,θ

)
| D
)
≈ 1

L

L∑
l=1

Fiv

(
t | Ti ≥ ti,ni +g ,b

(l)
i ,θ

(l)
)
,

where b(l)
i and θ(l) are drawn from π

(
bi ,θ | Dg

i ,D
)
, for l = 1, . . . , L and v = 1, 2.
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Context Bayesian joint modeling Sequential inference

Individual estimation of the dynamic conditional CIF

SMC for Bayesian joint models
Step 1. INITIALIZING.
Step 2. WEIGHTING.
if (ESS < KT ) then

Step 3. RESAMPLING.
Step 4. MOVE.

end
Step 5. PERSONALIZE.
Update the conditional CIF.
If new data available, return to Step 2.

Patient 12

Patient 131
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Context Bayesian joint modeling Sequential inference

Updating the posterior information

θ
Initial SMC-JM JAGS

Mean SD Mean SD Mean SD
Competing risks process - Alive

α01 -0.203 0.323 -0.221 0.313 -0.222 0.316
α11 -1.012 0.256 -0.998 0.253 -0.999 0.255
λ1 0.015 0.009 0.015 0.009 0.015 0.009
ν1 1.525 0.151 1.538 0.146 1.537 0.151
γ1 0.001 0.007 0.002 0.007 0.002 0.007

Competing risks process - Death
α02 3.367 0.948 3.272 0.858 3.278 0.861
α12 0.745 0.472 0.717 0.453 0.716 0.454
λ2 0.002 0.004 0.002 0.003 0.002 0.004
ν2 1.172 0.250 1.176 0.248 1.178 0.249
γ2 0.022 0.017 0.022 0.016 0.022 0.017

Longitudinal process - SOFA∗
β0 1.844 0.155 1.851 0.149 1.851 0.154
β1 -0.086 0.009 -0.088 0.009 -0.088 0.009
β2 0.005 0.002 0.005 0.002 0.005 0.002
σ 0.311 0.008 0.311 0.007 0.311 0.008
σ0 0.407 0.032 0.410 0.031 0.410 0.031
σ1 0.067 0.008 0.069 0.009 0.068 0.009

Time (min) 867 121 869
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Conclusions

SMC methods in Bayesian joint models
• Improve statistical efficiency by using all the data simultaneously in

a single model.

• “Complete” inference and quick update.

• Adaptations involving analytically intractable integrals.

• Incorporation of the step of update of the random effects.

ICU discharge data:

• Individual estimation of the dynamic CIF of each event.

• Reduction of 867 minutes to 121 minutes.
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