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Introduction

Drug development

I Traditionally, it follows a series of stages either in academia or industry
before being evaluated by the U.S. Food and Drug Administration
(FDA):

I Pre-clinical studies: Discovery;
I Phase I: Safety;
I Phase IIa/IIb: Activity/E�cacy;
I Phase III: De�nitive Evidence of E�cacy;
I New Drug Application (NDA) for FDA;
I Phase IV: Safety over time.
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Introduction
Drug development

Figure: Estimates from Wong et al. (2019) based on 406 038 entries of clinical
trial data for over 21 143 compounds from January 1, 2000 to October 31, 2015
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Introduction
Drug development

Could we improve such process?

I Phase III trials require signi�cant resources - time, money and patients;

I Overall failure rate of 41% for phase III trials, varying from 24.7% for
infectious diseases to 74.5% in oncology Grayling et al. (2019);

I Several authors Vickers et al. (2007); Minnerup et al. (2014); Jardim
et al. (2017) have pointed out that phase II trials are responsible for
the high rates of negative phase III trials:
I Design of single-arm instead of comparative randomized studies Taylor

et al. (2006); Tang et al. (2010);
I The use of short-term endpoints as a surrogate to long-term endpoints

that will be used in phase III trials Stroke (2001); Wilson et al. (2015).
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Introduction
Drug Development

Single-arm designs
I One-sample test;

I Disadvantages:
I No accounting for sampling

error in control estimates;
I Di�erences in case-mix;

I Advantages:
I Smaller samples sizes;
I Shorter trial duration.

Randomized designs
I Two-sample test;

I Advantages:
I Accounting for sampling

error in control estimates;
I Comparable case-mix;

I Disadvantages:
I Larger samples sizes;
I Longer trial durations;
I Clinical Equipose.
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Introduction
Drug development

Clinical Equipose

I It is the principle that states there is community uncertainty about the
relative therapeutic merits across all arms;

I All patients enrolled in a trial can be assured of receiving nothing less
than competent medical care. Hey and Kimmelman (2015)

Balanced Randomization

I It might not be appealing to patients know that they might not be
enrolled in the experimental arm;

I Ethical dilemma when subjects are equally randomized clashing with
patient's best interest and clinical practice.
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Introduction
Drug development

Response Adaptive Randomization (RAR)

I It has been proposed Thompson (1933); Wei and Durham (1978);
Eisele (1994); Berry and Eick (1995); Ivanova (2003) under classical
and Bayesian paradigms;

I On average, patients are allocated to the most promising experimental
arms;

I Controversial for two-arm studies Hey and Kimmelman (2015); Korn
and Freidlin (2011); Thall et al. (2015);

I Although it is an useful strategy in the context of dose selection
(multi-arm studies) Meinzer et al. (2017).

Randomized phase II trials with RAR

I It requires larger samples sizes than the single-arm studies;

I Changes on the paradigm are limited by the availability of resources.
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Introduction
Drug development

Inferential seamless phase II/III

I It has been proposed in the literature Maca et al. (2006); Bretz et al.
(2006) to shorten the drug development process with the gap between
phase II and III being minimized and make e�ciently use of patients'
data;

I In the �rst stage, a randomized phase II trial is performed such that
active arm is selected comparing to the control arm based on a
short-term endpoint;

I In the second stage, a phase III trial is implemented with the
long-term endpoint such that the data from the patients of �rst stage
is also taken into account.

I Such framework allows to accommodate more sophisticated phase II
designs;

I It allow us to take into account type I error in both phases.
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Introduction
Drug development

Inferential seamless phase II/III

I Inoue et al. (2002) proposed a seamless design under the Bayesian
approach with a joint Bayesian model for a short-term multinomial
and a time-to-event endpoints such that future event times were
simulated given the current data at each interim analysis;

I Huang et al. (2009) introduced RAR in a phase II/III design while also
jointly modeled a time-to-event and a multinomial endpoint under a
Bayesian approach;

I Others have also proposed similar designs under a hybrid
Bayesian/classical and classical approaches.
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Introduction

Stroke

I Acute stroke is a sudden interruption in the blood supply of the brain,
injuring brain cells and tissues.

Modi�ed Rankin Scale (mRS)

I It is a 7-level scale proposed by John Rankin in 1957:
I 0: No symptoms;
I 1: No signi�cant disability. Able to carry out all usual activities, despite

some symptoms;
I 2: Slight disability. Able to look after own a�airs without assistance,

but unable to carry out all previous activities;
I 3: Moderate disability. Requires some help, but able to walk unassisted;
I 4: Moderately severe disability. Unable to attend to own bodily needs

without assistance, and unable to walk unassisted;
I 5: Severe disability. Requires constant nursing care and attention,

bedridden, incontinent;
I 6: Dead.
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Introduction
Stroke

Trials

I Stroke trials commonly have 90-day mRS as primary endpoint;

I mRS is often dichotomized as 0-1 or 0-2.

NIHSS

I National Institute of Health Stroke Scale (NIHSS) is neurological
function measure ranging from 0= no de�cit to 42 = extreme de�cit;

I It is often assessed at baseline, 24-hours, 7-day and 90-day;

I 24h-NIHSS has sensitivity = 83% and speci�city 81% based on IMA
and IMS-II trials;

I Nowacki et al. (2017) proposed to use NIHSS as a surrogate of mRS
in the adaptive randomization under the classical approach;
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Introduction

Research questions

I What is the performance when we use NIHSS as a surrogate of mRS
with the RAR under the Bayesian approach?

I Can we also use NIHSS to take decisions in addition to the RAR
algorithm?
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Modeling Phase II

Modeling - Phase II

Long-term endpoint model

I Lij be a binary indicator of 90-day mRS 0-2 that will be observed after
a period τL for patient i receiving treatment j at time Tij :
I nj patients were accrued for treatment j ;
I mj patients were accrued for treatment j , but did not have their

long-term endpoint observed at time tmj ;
I i = 1, . . . , (nj −mj);
I j = 0, . . . , J, with j = 0 indicating the control arm.

I Lij ∼ Bernoulli(θj);

I θj is the probability of the event of interest for the long-term endpoint.
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Modeling Phase II

Modeling - Phase II
Long-term endpoint model

Likelihood

L(θj |Dnj (tmj )) =

nj−mj∏
i=1

θ
lij
j (1− θj)

1−lij ,

for j = 1, . . . , J.

Prior distributions

θj ∼ beta(aj , bj),

for j = 1, . . . , J.
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Modeling Phase II

Modeling - Phase II
Long-term endpoint model

Posterior distribution

θj |Dnj (tmj ) ∼ beta

aj +

nj−mj∑
i=1

lij , bj + (nj −mj)−
nj−mj∑
i=1

lij

 ,

for j = 1, . . . , J.
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Modeling Phase II

Modeling - Phase II
Long-term endpoint model

Issues

I Depending on accrual rate of patients, mj will be greater than zero;

I Often a short-term endpoint Sij for patients i = nj −mj + 1, . . . , nj is
available;

I Which strategy can we adopt in our clinical trial?
I Draw inferences for θ = (θ1, . . . , θJ) based only on the patients that

the long-term endpoint is observed;
I Replace the long-term endpoint by the short-term endpoint when the

former is not available in the likelihood of the long-term model.
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Modeling Phase II

Modeling - Phase II

Short-term endpoint model

I Sij be a binary indicator of the NIHSS ≤ 10 that will be observed after
a period τS with τS < τL for patient i receiving treatment j at time
Tij :
I nj patients were accrued for treatment j ;
I mj patients were accrued for treatment j , but did not have their

long-term endpoint observed at time tmj ;
I i = 1, . . . , (nj −mj);
I j = 0, . . . , J, with j = 0 indicating the control arm.

I Sij |Lij = l ∼ Bernoulli(λl);

I λl = P(Sj = 1|Lj = l) such that 1− λ0, λ1 are the bio-marker
sensitivity and speci�city.
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Modeling Phase II

Modeling - Phase II
Short-term endpoint model

Likelihood

L(θj , λ1, λ0|Dnj (tmj )) =

nj−mj∏
i=1

θ
lij
j (1− θj)

1−lij×

nj∏
i=nj−mj+1

{(θjλ1 + (1− θj)λ0)sij ×

(θj [1− λ1] + [1− θj ][1− λ0])1−sij
}
,

for j = 1, . . . , J.

marcio.diniz@cshs.org Bayesian seamless phase II/III designs August 14, 2020 19 / 62



Modeling Phase II

Modeling - Phase II
Short-term endpoint model

Issues
I In the case the short-term endpoint is a perfect bio-marker,

I Then λ1 = P(Sj = 1|Lj = 1) = 1 and λ0 = P(Sj = 1|Lj = 0) = 0;
I The likelihood reduces to

L(θj , λ1, λ0|Dnj (tmj )) =

nj−mj∏
i=1

θ
lij
j (1− θj)

1−lij×

nj∏
i=nj−mj+1

θ
sij
j (1− θj)1−sij ;

I Otherwise, posterior estimates for θ will be biased due confounding
with λ1 and λ0.
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Modeling Phase II

Modeling - Phase II

Long-term and short-term endpoints joint model

I Following Daniel Paulino et al. (2003), let Rijls be a binary indicator for
patient i receiving treatment j with Lij = l and Sij = s at time Tij :
I nj patients were accrued for treatment j ;
I mj patients were accrued for treatment j , but did not have their

long-term endpoint observed at time tmj ;
I i = 1, . . . , (nj −mj);
I j = 0, . . . , J, with j = 0 indicating the control arm;
I l , s = 0, 1.
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Modeling Phase II

Modeling - Phase II

Long-term and short-term endpoints joint model

I Rij = (Rij00,Rij10,Rij01,Rij11) ∼ multinomial(1,p) with
pj = (pj00, pj01, pj10, pj11) where
I pj00 = P(Lij = 0 and Sij = 0) = [1− θj ][1− λ0];
I pj01 = P(Lij = 0 and Sij = 1) = [1− θj ]λ0;
I pj10 = P(Lij = 1 and Sij = 0) = θj [1− λ1];
I pj11 = P(Lij = 1 and Sij = 1) = θjλ1.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Likelihood

I Ij is an index set of patients that have data for both endpoints in arm
j ;

I After |Ij | accrued patients,
DIj (tnj−|Ij |) = {(sij , lij , tij) : tij + τL < tI for i ∈ Ij}

I DI (tn−|Ij |) = ∪
J
j=0

DIj (tnj−|I |).

for j = 1, . . . , J.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Likelihood

L(θ, λ1, λ0|DI (tn−|I |)) =
J∏

j=1

∏
i∈I

p
rij00
j00 p

rij01
j01 p

rij10
j10 p

rij11
j11

=
J∏

j=1

∏
i∈I

θ
rij11+rij10
j (1− θj)(rij00+rij01)×

λ
rij11
1

(1− λ1)rij10 × (1− λ0)rij00λ
rij01
0

.

for j = 1, . . . , J.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Prior distributions

θj ∼ beta(aj , bj),

λl ∼ beta(cl , cl).

for j = 1, . . . , J and l = 0, 1.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Posterior distribution

θj ∼ beta(aj +
∑
i∈I

(rij11 + rij10), bj +
∑
i∈I

(rij00 + rij01)),

λ1 ∼ beta(cj1 +
J∑

j=1

∑
i∈I

rij11, dj1 +
J∑

j=1

∑
i∈I

rij10),

λ0 ∼ beta(cj0 +
J∑

j=1

∑
i∈I

rij01, dj0 +
J∑

j=1

∑
i∈I

rij00).

where I = ∪Jj=1
Ij and j = 1, . . . , J.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Posterior distribution

I Ij = {1, . . . , nj −mj} when we have accrued nj patients for treatment
j , but the long-term endpoint is missing for the last mj patients.

I However, we also can augment our data such that the last mj

observations for the long-term endpoint will be generated from
predictive distributions.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Predictive distribution

q0 = P(Lij = 0|Sij = 0)

=
(1− θj)(1− λ0)

(1− θj)(1− λ0) + θj(1− λ1)
,

q1 = P(Lij = 1|Sij = 1)

=
θjλ1

θjλ1 + (1− θj)λ0
.

where for i = nj −mj + 1, . . . , nj and j = 1, . . . , J.

I q0 and q1 can be interpreted as Negative Predictive Value and Positive
Predictive Value, respectively.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Predictive distribution using sensitivity

nj∑
i=nj−mj+1

rij00|Dnj ,mj ∼ Bin

mj −
nj∑

i=nj−mj+1

sij , q0

 ,

nj∑
i=nj−mj+1

rij01 = mj −
nj∑

i=nj−mj+1

sij −
nj∑

i=nj−mj+1

rij00.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Predictive distribution using speci�city

nj∑
i=nj−mj+1

rij11|Dnj ,mj ∼ Bin

 nj∑
i=nj−mj+1

sij , q1

 ,

nj∑
i=nj−mj+1

rij10 =

nj∑
i=nj−mj+1

sij −
nj∑

i=nj−mj+1

rij11.
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Modeling Phase II

Modeling - Phase II
Long-term and short-term endpoints joint model

Augmentation algorithm

I From this setup, we are able to draw inferences for θj for j = 1, . . . , J
as follows:

1. Choose adequate initial values for θ
(0)
j , λ

(0)
0
, λ

(0)
1

with
I = {1, . . . , nj −mj};

2. For k = 1, . . . ,K ,

a Imputation step:

Sample r
(k)
ij = (r

(k)
ij11, r

(k)
ij10, r

(k)
ij00, r

(k)
ij01) from the predictive distributions for

i = nj −mj + 1, . . . , nj given θ
(k−1)
j , λ

(k−1)
0 , λ

(k−1)
1 ;

b Posterior step:

Sample θ
(k)
j , λ

(k)
0 , λ

(k)
1 from posterior distribution with I = {1, . . . , nj}

given r
(k)
j .
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Modeling Phase III

Modeling - Phase III

Long-term model

I Let Yij be the ordinal mRS scale that is observed after a time window
τL for patient i receiving treatment arm j

I Nj patients were accrued for treatment j until time tmj ;

I mj patients were accrued for treatment j , but did not have their
long-term endpoint observed at time tmj ;

I i = 1, . . . ,Nj −mj ;

I j = 0, 1 with j = 0 indicating the control arm;

I Yij ∼ multinomial(gj) with gj = (gj1, . . . , gjK ).

marcio.diniz@cshs.org Bayesian seamless phase II/III designs August 14, 2020 28 / 62



Modeling Phase III

Modeling - Phase III
Long-term model

Likelihood

L(gj |DNj
(tmj )) =

Nj∏
i=1

K∏
k=1

g
I (yij=k)
jk ,

for j = 0, 1.
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Modeling Phase III

Modeling - Phase III
Long-term model

Prior distribution

gj ∼ Dir(αj1, . . . , αjK );

Posterior distribution

gj |DNj
(tmj ) ∼ Dir

αj1 +

Nj−mj∑
i=1

I (yij = 1), . . . , αjK +

Nj−mj∑
i=1

I (yij = K )

 .
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Modeling Phase III

Modeling - Phase III
Long-term model

Weighted average

I We also assume that each category k of Y has an associated weight
wk ;

I We are interested in the weighted average of the parameter vector g ,

µj =
K∑

k=1

wkgjk .

I The posterior distribution of µ = (µ0, µ1) is not analytically tractable,
but it can estimated through simulations of the empirical distribution
of g .
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Design

Design - Seamless Phase II/III
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Design Phase II

Design - Phase II

Set up

I Goal: Select the lowest dose with 90% of e�cacy relative to the
maximum e�cacy among J doses (d1, . . . , dJ) compared to the
control arm (d0);

I Primary endpoint: Proportion of subjects who show 90-day mRS ≤ 2
or 7-day NIHSS ≤ 10;

I E�cacy: Higher proportion of events when compared to the control
arm.

Randomization

I Stage 1: Balanced randomization of the �rst 15 patients for each of
the (J + 1) arms.

I Stake k: Adaptive Randomization every 5 patients.
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Design Phase II

Design - Phase II
RAR

Allocation probability

pj = P(θj > max(θi 6=j)i=1,...,J |Dn,m)

=

∫
1

0

. . .

∫
1

max(θi 6=j )i=1,...,J

πθj (xj |Dnj ,mj )
J∏

i=1,i 6=j

πθi (xi |Dni ,mi )δxjδxi ,

where Dn,m = ∪Jj=0
Dnj (tmj ) for j = 1, . . . , J.
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Design Phase II

Design - Phase II
RAR

Allocation probability

P(allocation arm j |Dn,m) =
pj∑J
j=0

pj
,

where

p0 = P(allocation arm 0|Dn,m) =
1

(J + 1)
.
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Design Phase II

Design - Phase II
Stopping rules

Winner probability

P(winner arm j |Dn,m) = P(θj > θ0|Dn,m)

=

∫
1

0

∫
1

θ0

πθj (xj |Dnj ,mj )πθ0(x0|Dn0,m0)δxjδx0.

for j = 1, . . . , J.
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Design Phase II

Design - Phase II
Stopping rules

Early Loser

I If
P(winner arm j |Dn,m) < δEL,

and arm j has at least 30 patients, then

P(allocation arm j |Dn,m) = 0

until the next allocation probability update.
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Design Phase II

Design - Phase II
Stopping rules

Early Winner

I If
P(winner arm j |Dn,m) > δEW ,

and arm j has at least 50 patients, then arm j is declared the early
winner and the trial is stopped early, and the trial proceeds to its
phase III.
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Design Phase II

Design - Phase II
Stopping rules

Futility

I If
P(θj > θmin|Dn,m) < δF ,

where θmin is �xed by the clinician, then arm j is declared futile and it
is dropped until the end of the trial.
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Design Phase II

Design - Phase II
Stopping rules

Late Winner

I After all patients have been evaluated, if

P(winner arm j |Dn,m) > δLW ,

then arm j is declared the winner and the trial proceeds to its phase
III. Otherwise, no dose is selected and the trial is stopped.
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Design Phase II

Design - Phase II
Stopping rules

E�cacy 90%

I If there is more than one arm as winner, then the probability of 90%
e�cacy is calculated for the winners,

P(winner arm j |Dn,m) = P(θj > 0.9θmax |Dn,m)

=

∫
1

0

∫
1

0.9θmx

πθj (xj |Dnj ,mj )×

πθmax (xmax |Dnmax ,mmax )δxjδxmax .

where θmax = θ∗j for j∗ = argmaxj pj .
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Design Phase III

Design - Phase III

Set up

I Goal: Compare the selected dose (dj∗) in phase II with the control arm
(d0);

I Two co-primary endpoints: proportion of mRS ≤ 2 from phase II trial
and UW-mRS;

I E�cacy: Higher proportion of events and weighted mean when
compared to the control arm.

Randomization

I Patients will be randomized to control and treatment arms according
to an unbalanced allocation ratio in such a way that the expected
number of patients in each arm equalizes at the end of the trial.
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Design - Phase II
Stopping rules

E�cacy

I H0 : H01 ∩ H02 vs H1 : H11 ∩ H12:
I H01 : θ0 ≥ θj∗ and H02 : µ0 ≥ µj∗;
I H11 : θ0 < θj∗ and H12 : µ0 < µj∗;

I The alternative hypotheses is accepted if

P(θj∗ > θ0|Dn(t)) > η.

and

P(µj∗ > µ0|Dn(t)) > γ..

with
I η. = ηEW and γ. = γEW for the interim analyses;
I η. = ηLW and γ. = γLW for the �nal analysis.
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Design Phase III

Design - Phase II
Stopping rules

Futility

I H0 : H01 ∩ H02 vs H1 : H11 ∩ H12:
I H01 : θ0 ≥ θj∗ and H02 : µ0 ≥ µj∗;
I H11 : θ0 < θj∗ and H12 : µ0 < µj∗;

I The null hypotheses is accepted if

Pred(P(θj∗ > θ0|Dn(t)) > ηLW |Dn(t)) > ηF

and

Pred(P(µj∗ > µ0|Dn(t)) > γLW |Dn(t)) > γF

where Pred(.|Dn(t)) indicates the predictive distribution.
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Application

Stroke trial
Accrual
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I 20 European sites will all be
ready to enroll on day 1;

I 100 Australian and US sites
will ramp up to a total of 9
patients/month for 14
months;

I 0.45 patient/month/site;

I Total sample size: up to
3000.
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Stroke trial
Null scenario
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I For all arms,
I mRS 0-2 = 0.46;
I UW-mRS = 0.56028.
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Stroke trial
Alternative scenario
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I For arms d0, d1 and d2,
I proportion of mRS 0-2 =

0.46;
I UW-mRS = 0.56028.

I For arm d3,
I proportion of mRS 0-2 =

0.58;
I UW-mRS = 0.60066.
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Stroke trial

Strategies

I S0 : Long-term model;

I S1 : Short-term model in the randomization and taking decisions;

I S2 : Short term model only in the randomization;

I S3 : Short and long-term joint model in the randomization and taking
decisions.
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Application

Stroke trial
Strategy S0

Prior Parameters

I Phase II: (aj , bj) = (0.5, 0.5) for j = 0, . . . , 3 were chosen as Je�rey
priors;

I Phase III: (αj0, . . . , αj6) for j = 0, . . . , 3 are de�ned based on data
collected on phase II.

Design Parameters

I Parameters were adjusted based on 2000 simulated trials to satisfy
type I error ≤ 0.025 and power > 0.80;

I Phase II:
(δEL = 0.05, δEW = 0.99, δF = 0.10, θmin = 0.40, δLW = 0.9);

I Phase III: (ηEW = γEW = 0.97, ηLW = γLW = 0.95, ηF = γF = 0.05);
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Stroke trial
Strategy S0

Sample size

I Phase II = 800 and Phase III = 2100;

Operating Characteristics

I Null scenario:
I Transition = P(Go to Phase III|Null scenario) = 0.192;
I Type I error = P(Any winner in Phase III|Null scenario) = 0.0229;
I Phase II duration = 30.63 (20.38 ; 34.86).

I Alternative scenario:
I Power = P(Arm d3 as winner in Phase III|Alternative scenario) =

0.812;
I Phase II duration = 27.71 (14.08 ; 36.78).
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Stroke trial
Null scenario
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Figure: Transition probability
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Stroke trial
Null scenario
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Figure: Type I Error
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Stroke trial
Null scenario
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Stroke trial
Null scenario
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Stroke trial
Null scenario
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Figure: Phase II duration - Quantile 75%
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Stroke trial
Alternative scenario
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Figure: Power
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Stroke trial
Alternative scenario
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Stroke trial
Alternative scenario
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Stroke trial
Alternative scenario
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Concluding Remarks

Strategies

I S1 and S3 shorten the phase II duration in around 4 months;

I S1 in�ates type I error up to 30%, while S3 does not;

I S1 and S3 decreases power up to 8% as sensitivity and speci�city
decreases;

I S2 slightly increases power and type I error, but does not decrease
phase II duration.

Trial

I Modeling the misclassi�cation should be done in case short-term
endpoints are used as surrogates for long-term endpoints when
designing a trial.

I Does the trade-o� between shortening the trial in 4 months and
increasing sample size to reach 80% power worth?
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