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Dynamic systems (D.S)

Definition: A sequence of evolving probability distributions πt(Xt)
indexed by discrete time t = 0, 1, . . . , is called a probabilistic
dynamic system, and the state variable Xt can evolve in the
following tree ways
• increasing dimension: Xt+1 = (Xt, xt+1).
• discharging: Xt+1 has one a fewer component than Xt

• no change: Xt+1 = Xt

Note that, πt() is a target distribution of the D.S. The difference
between πt and πt+1 is because exit a new state. Usually we need
estimate the πt(xt+1) (prediction), πt+1(xt) (updating/smoothing) and
πt+1(xt+1) (new estimation/ filtering).



The state-space model to Dynamic models

Dynamic models (DM) in state space models (SSM) were
developed in control system, and have been implemented in
several areas such as space engineering, signals processing,
economy, environment and DNA sequence analysis. These
models are described in two equations, the first referred to
observations and the second referred to unknown states. Let θ and
ht be the vector of parameters and the set of states, a DM as
follows:

yt|ht, θ ∼ f (. . . |ht, θ), (1a)

ht+1|ht, θ ∼ g(ht+1|ht, θ). (1b)

State-space models aim to fit dynamic models for sequentially
observed data yt. In these models, the states (ht) and fixed
parameters, are assumed to drive the data. State-space models
are specified at each time t by the observation equation f (yt|ht, θ)
and the evolution equation g(ht+1|ht, θ).



The space state models to Dynamic Models

Let θ and {hi
1:T } be the vector of parameters and the set of states,

the model consists of two equations:

yt = f (yt−1, ht, θ) + εt, t = 1, 2 . . . ,T , (2a)

ht+1 = g(ht, θ) + ηt, t = 1, 2 . . . ,T − 1, (2b)

We are interested in the posterior density p(θ|yt, h1:T ), obtained
from the joint distribution p(θ, h1:T |yt), where yt are the observations
yt = {y1, . . . , yT }, i.e, the estimated sequential parameters and the
state filter problem are associated to the joint posterior distribution,
p(ht, θ|yt).



The main problem in dynamic models:

"The estimation of the parameters and states and πt(θ, xt)"
Some methods:
• Kalman filter method. (parametric method)

• f and g (2a-2b)are linear and Gaussian noise.(GL)

• For Non Gaussian and non-linear models:
• Extended Kalman Filter,(author?) (Sorenson e Alspach 1971).

• Very slow, change the posterior function for Taylor approach
and may lead to biased estimates,

• Numeric Monte Carlo method:
We need:samples either drawn from πt(θ, xt), or drawn from
another distribution gt() and weighted properly.
• MC plus MCMC schemes (to Static methods) treat each πt

separately and repeating the same kind of iterative processes.
All draws obtained at time t are discarded in the evolve from πt

to πt+1.
• Sequence Monte Carlo SMC (Particle Filters PF):

• Fast method but may lead to biased estimates,
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Some problems, for these methods:

• In all SISR (IS,SIS,SIR) procedures, the discrete
representation of g(ht) by a sample hj

t with weight wj
t

degenerates very rapidly as the number of resampling
increases. Then, estimating E(H(ht)) can be very inaccurate.

• IS allows us to sample from complex highly-dimensional
distributions though exhibits linear increases in complexity
upon each subsequent draw (Doucet and Johansen 2008).

• SIS method is sensitive to the choice of the proposed density,
(state transition probability). The variance of estimates
increases exponentially with n and leads to fewer and fewer
non-zero importance weights (Doucet and Johansen 2008).
This problem is known as weight degeneracy.

• SIR leads to a lack of diversity amongst particles, a problem is
known as sample impoverishment (there are many repeated
points). Thus the weight degeneracy and sample
impoverishment are part of one larger correlated problem.



Some problems, for these methods:
• In all SISR (IS,SIS,SIR) procedures, the discrete

representation of g(ht) by a sample hj
t with weight wj

t
degenerates very rapidly as the number of resampling
increases. Then, estimating E(H(ht)) can be very inaccurate.

• IS allows us to sample from complex highly-dimensional
distributions though exhibits linear increases in complexity
upon each subsequent draw (Doucet and Johansen 2008).

• SIS method is sensitive to the choice of the proposed density,
(state transition probability). The variance of estimates
increases exponentially with n and leads to fewer and fewer
non-zero importance weights (Doucet and Johansen 2008).
This problem is known as weight degeneracy.

• SIR leads to a lack of diversity amongst particles, a problem is
known as sample impoverishment (there are many repeated
points). Thus the weight degeneracy and sample
impoverishment are part of one larger correlated problem.



Some problems, for these methods:
• In all SISR (IS,SIS,SIR) procedures, the discrete

representation of g(ht) by a sample hj
t with weight wj

t
degenerates very rapidly as the number of resampling
increases. Then, estimating E(H(ht)) can be very inaccurate.

• IS allows us to sample from complex highly-dimensional
distributions though exhibits linear increases in complexity
upon each subsequent draw (Doucet and Johansen 2008).

• SIS method is sensitive to the choice of the proposed density,
(state transition probability). The variance of estimates
increases exponentially with n and leads to fewer and fewer
non-zero importance weights (Doucet and Johansen 2008).
This problem is known as weight degeneracy.

• SIR leads to a lack of diversity amongst particles, a problem is
known as sample impoverishment (there are many repeated
points). Thus the weight degeneracy and sample
impoverishment are part of one larger correlated problem.



Several methods to Dynamic Models

For the parameters:

• MCMC methods plus Kalman filter.
• using approximation/linearlization (Taylor approach),

• computationally intensive, and slow convergence.
• Sequential Monte Carlo or Particle Filters

• Bootstrap Filter,Auxiliar Particle Filter ((Shephard e Pitt 1997)).
Use importance sampling.

• Particle filter/learning Liu and West
• Kernel smoothing in Mixture Gaussian Dist.
• Use SIR for the states.
• result biased estimates in NLNG models.
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Summary:

• Many paper highlight the potential inaccuracy of SIS
estimation due to the large variance of the importance
weights.

• Most particles continue being used despite having a negligible
weight, which causes accuracy and performance problems.
This is know as weight degeneracy problem and consists in
the approximation to zero of most weights after a few
iterations.

• The Sequential Importance Re-sampling (SIR) attempts to
solve the problem, by replacing high weight particles with
many particles with high correlation among them.

• Re-sampling, however, leads to the marginal distribution of
the state collapsing onto a few or single unique particles, thus
eventually leading to a problem similar to weight degeneracy.

Liu and West,2001, suggested the use of kernel smoothing in
mixture multivariate Gaussian distributions to approximate the
posterior distribution for the parameters of the model, to overcome
the sampling problem of the parameter.
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Solution propose

• The analysis of the aforementioned works led us to identify
that the process of sampling for a generation of parameter
values (one each time) conditioned to few states causes the
problem of the convergence.

• We claim that by evaluating several parameter values
simultaneously we avoid the degeneration problem.

• We propose the adoption of the Bare Borne Particle Swarm
Optimization (BBPSO) method for sequential learning of
states and parameters.

The idea of analyzing multiple values at a time is complemented
with information exchange among them, moves us to propose the
use of the Particle Swarm Optimization (PSO) method.



Filtering for States and Parameter

In the general for fixed parameters model θ, considering the joint
distribution,
• the sample-based framework starting at the time t, we obtain

a joint sample hj
t, θ

j
t : j = 1, . . . ,N with weights wj

t.
• Based on yt+1, we generate a sample from p(ht+1, θ|Ft+1).

By Bayes theorem we have

p(ht+1, θ|Ft+1) ∝ p(yt+1|ht+1, θ)p(ht+1, θ|Ft) (3a)

∝ p(yt+1|ht+1, θ)p(ht+1|θ,Ft)p(θ|Ft) (3b)

• this is, density function p(θ|Ft) is an important ingredient in the
update.



• Gordon (1): to reducing the sample degeneracy/attrition
problem :(θt+1 = θt + εt+1 and εt ∼ N(0,Wt+1) where θt and εt+1
are independent.

• In literature, were suggested many others variations of this
method.

• (author?) (Liu e West 2001) suggested a kernel smoothing
approximation of p(θ|yt), by a mixture of multivariate normals
(author?) (West e Harrison 1997).



Particle filter Liu-West

(author?) (Liu e West 2001) suggested a kernel smoothing
approximation of p(θ|yt) by a mixture of multivariate normals.
Let be {h(l)

t , θ
(l)
t ,w

(l)
t }

N
l=1 ∼ p̂(ht, θ|yt) a sample, then the posterior

approximation of the parameter is given by
p̂(θ|Y1:t) =

∑N
j=1 wj

tN(aθ(j)
t + (1 − a)θ̂t; h2Vt)

θ̂t =

N∑
j=1

w(j)
t θ

(j)
t ,

Vt =

N∑
j=1

w(j)
t (θ(j)

t − θ̄t)(θ
(j)
t − θ̄t)T ,

a and h are function of δ ∈ (0, 1], with h2 = 1 − ((3δ − 1)/2δ)2 and
a =
√

1 − h2. (author?) (Liu e West 2001) suggested δ around
0.95-0.99.



Algorithm 1 (Liu and West)

Algorithm 1

1 kl is sampled from p(yt+1|µ
(j)
t+1, θ

(j)
t )w(j)

t with µ(j)
t+1 = E(ht+1|ht, θ)

2 θ(l)
t+1 is sampled from N(aθ(kl)

t + (1 − a)θ̂t; h2Vt)

3 h(l)
t+1 is sampled from p(ht+1|h

(kl)
t , θ(l)

t+1) which leads to weights

w(l)
t+1 ∝

p(yt+1 |h
(l)
t+1,θ

(l)
t+1)

p(yt+1 |µ
k(l)
t+1 ,m

kl
t )

4 Sample from the posterior, {h(l)
t+1, θ

(l)
t+1,w

(l)
t+1
}Nl=1 ∼ p(ht+1, θ|yt+1).

Liu and West have generalized the APF method, to adapt
sequential parameter learning.This method, though, still has the
problem of producing degenerate parameter estimates, which
complicates accurate forecasting.



Bare Borne Particle Swarm Optimization (BBPSO)

Let S ⊂ RD be the search space of an objective function f .
• BBPSO is an algorithm based on a population living in S.
• The population is referred to as swarm and its individuals are

referred to as particles.
• The position of a particle in S represents a potential solution,
• Each particle keeps the memory of the personal best solution

found during the search process
• The particles use a neighborhood system to exchange

information between them. So, each particle also keeps the
memory of the best solution found by any particle in its
neighborhood.

Thus, the particles are influenced by their own previous
experiences and by the experiences of their neighbors.



Swarms of Birds and bees - Particle Swarms Optimization.



Bare Bones Particle Swarm Optimization in particle filters

• Consider a swarm S with K particles. The position of a
particle is denoted by an D-dimensional vector
xτk = (xτk1, . . . , x

τ
kD)′ in S.

• The index k (k = 1, . . . ,K) labels the kth particle in S and the
index τ (τ = 1, 2, . . .) represents the iteration,

• The neighborhood of a particle is a set Nk of particles which
is able to communicate with (Nk ⊆ S)

• The personal and neighborhood best positions are
respectively denoted by pτk and nτk.



Bare Bones Particle Swarm Optimization in particle filters

The swarm is initialized with random positions in S. On the
initialization, p1

k = x1
k for all k and n1

k is given by:

n1
k = BEST(p1

l |l ∈ Nk) = arg max{f (p1
l )|l ∈ Nk} (4)

The position of a particle is updated as follows:

xτ+1
k = µτk + στk � z (5)

where
• µτk = (µτk1, . . . , µ

τ
kD)′ = 1

2 (pτk1 + nτk1, . . . , p
τ
kD + nτkD)′

• στk = (στk1, . . . , σ
τ
kD)′ = (|pτk1 − nτk1|, . . . , |p

τ
kD − nτkD|)

′

• z = (z1, . . . , zD)′ ∼ (N1(0, 1), idd. . .,ND(0, 1))′.
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This is,
xτ+1

kd ∼ N(µτkd, (σ
τ
kd)2) (6)

for all k, d and τ ≥ 1. In addition, xτ+1
k has multivariate normal

distribution with mean vector µτk and covariance matrix Στ
k, that is,

xτ+1
k ∼ N(µτk,Σ

τ
k) where

Στ
k = diag(|pτk1 − nτk1|

2, . . . , |pτkD − nτkD|
2).

After updating the position, the personal best position is updated
as follows:

pτ+1
k = BEST(xτ+1

k , pτk). (7)

Finally, the neighborhood best position is given by:

nτ+1
k = BEST(pτ+1

l |l ∈ Nk). (8)

The essential steps of the canonical BBPSO can be summarized
as the pseudo code shown in Algorithm 2.
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k, that is,

xτ+1
k ∼ N(µτk,Σ

τ
k) where

Στ
k = diag(|pτk1 − nτk1|

2, . . . , |pτkD − nτkD|
2).

After updating the position, the personal best position is updated
as follows:

pτ+1
k = BEST(xτ+1

k , pτk). (7)

Finally, the neighborhood best position is given by:

nτ+1
k = BEST(pτ+1

l |l ∈ Nk). (8)

The essential steps of the canonical BBPSO can be summarized
as the pseudo code shown in Algorithm 2.



1 Require K,N , τmax,β, f , boderline : x, x̄.

2 To τ← 1

• FOR k ∈ {1 . . .K} xk ← x + (x̄ − x) � U(0, 1) and pk ← xk, END
FOR.

• FOR k ∈ {1 . . .K} nk ← BEST(pl|l ∈ Nk) END FOR,

3 Repeat τ← τ + 1

• FOR k ∈ {1 . . .K} xk ← µk + Σ
1
2 z according to Eq.(5) END FOR,

• FOR k ∈ {1 . . .K} pτk ← BEST(xτk, p
τ−1
k ), END FOR,

• FOR k ∈ {1 . . .K} nk ← BEST(pl|l ∈ Nk), END FOR

4 UNTIL some termination condition is met,(For example τ = T)

5 Do g← BEST(nk |k = 1, . . . ,K)

6 RETURN g and f (g)







Particle Swarm Learning optimization (PSLO)

Proposed method:

The resulting general algorithm as follows,

• Resample
{
(ht, θt)i

}N
i=1
∼
{
h
′

t , θt
}N
i=1

with weights

wt ∝ p(yt|g(ht−1),m(i)(θ) = θ̂i) and g(ht−1) = α + βht−1.
• Optimization (θt+1) = θ̂t+1 = arg.max(f (θ|ht)) via BBPSO.
• Sampler {(ht+1)}Ni=1 ∼ p(ht+1|θ̂t+1, ht), which leads to weights

wl
t+1 ∝

p(yt+1 |hl
t+1,θ̂t+1)

p(yt+1 |g(ht),θ̂t+1)
,

• Sampler from the posterior,{
hl

t+1, θ
l
t+1,w

l
t+1

}N
l=1
∝ p(ht+1, θ̂t+1|yt+1).

• Finaly, we find θ̂Opt via BBPSO, this is,
θ̂Opt ← arg.max(f (θ|ht+1) with Tmax = 100.

• optionalment we have the l previtions via BBPSO.

This method is summary in the next algorithm,



Particle Swarm Learning optimization (PSLO)

• Require the number of particles N (PF), K,N , c1, c2 (BBPSO).
• Initialize, m0, C0, ν0, τ

2
0, b0 and B0 in PF.

• For t ∈ {1, . . . , n}
• Resample

{
(ht, θt)i

}N
i=1
∼
{
h‘

t , θt

}N
i=1

,
• Kl is sampled with weights wt ∝ p(yt |µ

j
t, θ

(j)
t ), µj

t = E(ht |ht−1, θ);
• Estimation: via BBPSO. Initialize, D1,S1 ⊂ R

D1 , and τ1
MAX.

• θ̂ = θt+1 ← argmax(log(p(θ|ht, yt)))

• (Propagate) h(l)
t+1 is sampled from p(ht+1|h

(kl)
t , θ(l)

t+1) with leads

to weights w(l)
t+1 ∝

p(yt+1 |h
(l)
t+1,θ

(l)
t+1)

p(yt+1 |µ
k(l)
t+1 ,θ

kl
t )

• Sample from the posterior,
{h(l)

t+1, θ
(l)
t+1,w

(l)
t+1
}Nl=1 ∼ p(ht+1, θt+1|yt+1).

• Finally, we find θ̂Opt via BBPSO, this is,
θ̂Opt ← arg.max(f (θ|ht+1) to compared with the estimation.

• ENDFOR
• RETURN θ̂,hn+1:T and hT+1:T+l.



Example: The basic Stochastic Volatility model

Among the variants of the stochastic volatility model, (Taylor 1982)
proposed a SV model in discrete time as follows:

yt = e
ht
2 εt, t = 1, 2 . . . ,T , (9a)

ht+1 = α + φht + σηηt, t = 1, 2 . . . ,T − 1, (9b)

where yt and ht are the returns (corrected by the mean) and the
log-volatility at time t respectively, which is assumed to follow a
stationary process, |φ| < 1 is the persistence in the volatility, ση is
the standard deviation of log-volatility. The innovations εt and ηt

are assumed independent, with standard Gaussian distribution,

and h1 ∼ N(µ;
σ2
η

(1−φ2) ). We use the notation SV-N to denote this

model and θ = (µ, σ2
η, φ) the parameter of the SV model.



We can express the likelihood functions and the distribution of the
states as

p(y1:T | h1:T , λ1:T , θ) ∝

T∏
t=1

λ1/2
t

(eht )1/2 e−
λ

1/2
t

2eht
y2

t , (10a)

p(h1:T | θ) ∝

√
(1 − φ2)

2σ2
η

× e
−(1−φ2)

2σ2
η

(h1−
α

1−φ )2

×

T∏
t=2

1
ση

e
−1

2σ2
η

(ht−α−φht−1)2

,(10b)

p(λ1:T ) ∝

T∏
t=1

p(λt/v) =

T∏
t=1

ν
2
ν
2

Γ( ν2 )
λ

ν
2
t e( −ν2 λt). (10c)

Therefore a joint distribution function p(θ,ht|yt) is given by the
following product

L(θ,h1:T |y1:T ) = p(y1:T | h1:T , θ) × p(h1:T | θ) × p(λ1:T | ν), (11)

where θ = (α, φ, σ2
η) and ν = 2, . . . , 20. For PSLO method, we use

the Algorithm PSLO with K = 30 τMAX := 100 iterations..



Note that, we have two maximization functions, for the parameters
and forecasting the volatility. Accordingly, both objective functions
are described as follows

f (θ) ∝ log

√
1 − φ2

ση
−

(1 − φ2)
2σ2

η

(h1 −
α

1 − φ
)2 −

n∑
t=2

(ht − α − φht−1)2

2σ2
η

+ logσ2
η,(12a)

f (ht) = −
1
2

T∑
t=1

(ht − α − φht−1)2

σ2
η

−
T
2

logσ2
η. −

1
2

T∑
t=1

(ht +
λt

eht
y2

t ), (12b)

where ht is the l-forecast states in particle learning and K = l is
the number of smooth states via BBPSO.



Fig. 1 shows the evolution of the parameters, which illustrates the
learning process via PL-LW, delayed approximately 1000 iterations
to find the stable process for the parameters. Since we considered
the possible efficiency improvement, we decided to include the last
of each 60 samples generated by the Liu and West methodology.
Nonetheless, a high inefficiency factor remained in both cases
(Table 1 and 2).
Figures 2 and 3 show the convergence process PSLO in both time
series, we can see that for a few numbers of iterations (30 approx.)
the sequence given by PSLO converge to the optimal value,
meantime in PL sequences need 1000 iterations approximately.



LW LW-J PSLO
α φ σ time α φ σ α φ σ time

No 336.32 330.43 281.54 76,13 7.12 7.05 17.44 11.32 4.07 4.33 43,58
T2 328.73 329.72 328.64 93,92 7.82 8.53 15.73 9.51 8.25 4.07 66,97
T3 302.95 322.91 330.92 92,64 9.29 9.27 7.90 10.23 11.64 13.53 66,54
T4 325.09 327.66 225.94 94,62 4.94 5.48 14.93 5.97 16.71 4.52 68,76
T5 235.90 340.77 223.24 102,12 15.53 15.74 16.18 11.95 16.28 6.65 67,8
T6 305.80 310.96 331.67 100,41 8.52 10.63 25.56 15.34 5.79 6.82 69,5
T7 331.30 332.48 352.20 101,46 6.25 6.84 16.58 10.58 14.14 12.46 66,86
T8 292.70 289.75 313.17 99,28 32.59 32.64 18.46 15.56 15.71 18.58 68,22
T9 323.41 323.50 254.7 97,98 16.90 20.14 22.99 7.85 14.64 12.37 68,81

T10 316.56 326.02 317.34 100,34 6.75 6.78 17.55 17.67 9.75 12.21 67,6
T11 327.45 325.90 249.60 100,54 17.33 18.13 25.82 9.27 9.77 7.85 69,64
T12 265.16 306.76 189.24 99,62 19.32 20.40 8.66 8.58 9.24 13.80 66,45
T19 273.24 43.15 330.49 99,6 13.59 17.06 11.32 15.86 16.64 4.60 66,71
T20 327.28 332.27 141.94 98,89 4.69 4.75 19.72 11.26 16.40 4.92 68,98

Tabela: Inefficient factor (RNI) and delay time for the SP500 return in
ARSV models via PL-LW and PSLO (100 iterations and log-posterior
density as the optimization function).



LW LW-J PSLO
α φ σ time α φ σ α φ σ time

N 89.39 89.18 145.52 62.97 27.77 29.52 28.99 8.96 4.70 5.28 41.56
T2 178.89 174.00 199.76 75.91 29.55 30.60 17.50 6.50 2.20 4.20 56.80
T3 122.05 121.67 187.18 76.97 15.66 15.82 9.27 8.50 7.66 5.58 57.14
T4 151.09 149.81 240.72 77.08 33.07 37.71 16.94 11.58 4.37 5.55 57.20
T5 109.13 108.09 88.13 82.27 10.87 10.38 37.33 6.75 3.82 7.85 57.90
T6 95.92 97.71 243.37 78.92 17.62 17.46 17.33 6.99 6.63 7.82 58.17
T7 159.94 160.26 274.52 77.93 24.40 28.98 33.71 7.92 5.57 3.97 57.26
T8 95.23 95.16 262.69 77.69 23.75 23.60 25.38 3.54 4.41 3.21 56.77
T9 134.18 135.51 102.46 78.42 12.55 13.83 10.01 16.63 7.19 6.50 57.19

T10 116.39 117.29 276.67 78.23 30.86 30.94 29.29 16.63 7.19 6.50 57.19
T11 101.00 101.24 175.60 77.70 3.14 3.18 12.58 8.38 3.22 7.50 56.52
T12 100.29 97.82 100.50 77.40 25.62 25.71 25.51 13.41 4.28 3.97 56.57
T13 93.67 95.02 277.42 78.14 24.88 24.26 32.71 10.88 3.05 5.63 56.43
T14 94.17 95.08 188.17 77.40 8.36 8.66 15.84 11.50 7.35 2.70 56.48
T18 86.20 86.35 259.50 77.63 15.38 15.03 23.50 10.26 3.48 7.51 56.50
T19 102.81 103.88 302.57 78.05 34.43 35.35 33.68 11.83 3.09 6.39 56.36
T20 98.42 99.78 198.10 77.67 8.42 5.92 28.46 19.88 8.05 8.38 56.01

Tabela: Inefficient factor (RNI) and delay time for the IBOVESPA
(IBV)return in ARSV models via PL-LW and PSLO (100 iterations and
log-posterior density as the optimization function).



α φ σ2 time α φ σ2 time
N 0,0051 0,9895 0,0606 T11 0,0108 0,9861 0,0768

1,04E-02 1,30E-03 1,70E-02 46,06 2,00E-02 1,33E-02 3,91E-02 72,88
T2 0,0119 0,9891 0,0666 T12 0,0027 0,9898 0,0538

2,35E-02 2,40E-03 2,49E-02 67,81 5,10E-03 4,00E-04 3,30E-03 72,63
T3 0,0097 0,9887 0,0605 T13 0,0166 0,9886 0,0643

1,85E-02 3,80E-03 1,71E-02 66,77 3,01E-02 3,40E-03 2,87E-02 71,85
T4 0,0046 0,9876 0,0643 T14 0,0091 0,9889 0,0659

7,90E-03 9,60E-03 2,75E-02 68,05 1,59E-02 3,00E-03 2,50E-02 71,78
T5 0,0093 0,9896 0,0601 T15 0,01 0,9885 0,0607

2,03E-02 1,00E-03 1,55E-02 74,09 1,88E-02 3,50E-03 1,90E-02 71,83
T6 0,0061 0,9892 0,0598 T16 0,0066 0,988 0,0626

1,26E-02 2,10E-03 2,36E-02 73,07 1,35E-02 9,20E-03 2,02E-02 71,49
T7 0,008 0,9895 0,0598 T17 0,0064 0,9884 0,0627

1,77E-02 1,30E-03 1,79E-02 73,22 1,62E-02 4,20E-03 1,90E-02 71,86
T8 0,0092 0,9873 0,0728 T18 0,0117 0,9898 0,0565

1,67E-02 5,80E-03 3,37E-02 72,07 1,93E-02 5,00E-04 7,50E-03 71,83
T9 0,0104 0,9889 0,062 T19 0,0077 0,989 0,0648

2,36E-02 1,80E-03 1,64E-02 72,61 1,25E-02 2,40E-03 2,47E-02 71,89
T10 0,0057 0,9879 0,0687 T20 0,0062 0,9889 0,0583

1,14E-02 4,80E-03 3,15E-02 72,58 1,07E-02 4,90E-03 1,53E-02 72,47

Tabela: Estimated values to the parameters in SV models via PSLO.
Data set:S&P500 returns. For each model, the first row: mean, the
second row: standard deviation (Stdev) and time in the PSLO process
(100 iterations for log-posterior density).



p(α)

De
ns

ity

−20 −15 −10 −5 0 5 10 15

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

1000 2000 3000

−6
−4

−2
0

Normal

Months

α

1000 2000 3000

−6
−4

−2
0

t12

Months

α

1000 2000 3000

−6
−4

−2
0

t7

Months

α

p(β)

De
ns

ity

−15 −10 −5 0 5 10 15

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

1000 2000 3000

0.4
0.6

0.8
1.0

Normal

Months

β

1000 2000 3000

0.4
0.6

0.8
1.0

t12

Months

β

1000 2000 3000

0.4
0.6

0.8
1.0

t7

Months

β

p(τ2)

De
ns

ity

0.00 0.02 0.04 0.06 0.08 0.10

0
20

40
60

80

1000 2000 3000

0.0
0.2

0.4
0.6

0.8

Normal

Months

τ2

1000 2000 3000

0.0
0.2

0.4
0.6

0.8

t12

Months

τ2

1000 2000 3000

0.0
0.2

0.4
0.6

0.8

t7

Months

τ2

Particle Filter Liu West, in the SV model for daily returns of SP500.
Sample estimates for each parameter (α , φ and σ2).
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Figura: Particle Swarm learning Optimization in the SV model for daily
returns of IBOVESPA. Sample estimates for each parameter (α, φ and
σ2) to the Normal distribution and t-distributions noise.
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PSLO, in the SV model for daily returns of SP500. Sample estimates for
each parameter (α , φ and σ2).



Application 2: State-space AR(1) model.

A total of T = 1000 observations were simulated from the
state-space AR(1) model with normal noise, with true parameter
values α = 0.00, φ = 0.50, σ2 = 0.10.
The hierarchical form of the model is described as,

yt = ht + εt, (13a)

ht+1 = α + φht + σηηt, (13b)

h0 = N(C0,m0), εt ∼ N(0, 1), ηt ∼ N(0, 1), (13c)

For εt = λ
− 1

2
t εt, εt follows a Student’s-t distribution with ν degrees of

freedom.



We employ the slightly informative prior on α ∼ N(a0 = 10, b0 = 1)
We set φ = 2φ∗ − 1, specify Beta(p, q) prior for φ∗ with p = 20 and
q = 1.5 which gives a prior mean for φ of 0.86. A prior is chosen for
σ2 ∼ IG with prior mean of 0.0167 and prior standard deviation of
0.0236.
The algorithm to PSLO need the function maximized is the
log-posterior density of the parameters given by,

f (x) =
(1 − φ2)
σ2 [

h1 − α

(1 − φ)
]2−ln(1−φ2)+

n∑
t=2

(ht − α − φ ∗ ht−1)2

σ2 +(n+To−1)ln(σ2)

+(Mo-2)σ2 + [ (α−a0)
b0 ]2 − ln(1 − φ)(2q − 1) − ln(1 + φ) + 2pln(φ)

To implement the sequence Monte Carlo scheme, the PL-LW was used
for the simulations. We performed N=10000 particles in each time. For
the PSLO methodology, we considered 30 particles in the swarm.
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Particle learning used to estimate in the AR1 state-space models.
Sample estimates for each parameter (α (top), β (middle) and τ2

(botton)). The extreme lines represent the 2.5% and 97.5% quantiles and
lines in the middle represent the posterior mean.
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Criteria Comparison

M-L LPS
Liu West ranking PSLO ranking Liu-West ranking PSLO ranking

N 9,750 17 9,308 10 12,876 4 9,290 19
T2 7,590 1 9,313 13 12,765 1 9,116 1
T3 9,546 6 9,300 2 12,859 2 9,135 2
T4 9,703 13 9,316 17 12,948 20 9,159 5
T5 9,621 9 9,302 4 12,892 9 9,150 3
T6 9,637 10 9,312 12 12,909 12 9,221 11
T7 9,396 3 9,322 18 12,916 14 9,151 4
T8 9,753 18 9,301 3 12,940 19 9,232 14
T9 9,586 8 9,325 19 12,923 16 9,198 6

T10 9,750 16 9,306 8 12,929 17 9,198 7
T11 9,559 7 9,316 16 12,890 7 9,217 10
T12 9,482 4 9,349 20 12,870 3 9,333 20
T13 9,759 20 9,316 15 12,922 15 9,223 12
T14 9,289 2 9,299 1 12,915 13 9,241 16
T15 9,710 14 9,307 9 12,901 10 9,241 15
T16 9,755 19 9,309 11 12,931 18 9,207 9
T17 9,518 5 9,304 7 12,891 8 9,247 17
T18 9,702 12 9,302 6 12,887 6 9,248 18
T19 9,675 11 9,315 14 12,905 11 9,201 8
T20 9,745 15 9,302 5 12,887 5 9,225 13

Tabela: Criteria Comparison for the Particle Learning methods (PSLO and PL-LW) with normal and Student’s-t states.
Time series: S&P500 returns. (Criteria: Estimated marginal likelihoods scale (log-ML) and log predictive score LPS).



Criteria Comparison

Tabela: Criteria Comparison for the Particle Learning methods (PSLO
and PL-LW). Time series: Ibovespa returns. (Criteria: Estimated
marginal likelihoods scale (log-ML) and log predictive score LPS).

M-L LPS
Liu West ranking PSLO ranking Liu-West ranking PSLO ranking

N 9,77 7 9,309 4 12,87 6 9,19 9
T2 10,54 9 9,303 2 12,86 5 9,04 2
T3 8,83 3 9,313 5 12,81 4 9,05 3
T4 9,14 5 9,302 1 12,88 7 9,01 1
T5 9,53 6 9,327 8 12,77 3 9,09 5
T6 7,46 1 9,316 6 12,69 2 9,11 6
T7 8,94 4 9,361 9 12,57 1 9,12 7
T8 7,88 2 9,308 3 12,91 8 9,07 4
T9 10,06 8 9,323 7 12,91 9 9,12 8



Conclusions

• This paper proposed an alternative method to state-space models in dynamic
models, specifically in NLNG.

• The PSLO method smooths and filters the states, and estimates the parameters
of the model in an efficient and accurate way.

• We understand that our contribution is the introduction of a new process that
changes the Kernel process or sampler process (sequences Monte Carlo) by the
optimization process.

• In addition, the major difference from the other methods is the individual and
global learning, given by the swarm particles.

• The learning of each particulate of the swarm (collective and individual) makes
the method faster and efficient.

• Therefore, the result is achieved by information spreading through the swarm
instead of individual learning, thus producing a rapid and efficient algorithm.

• The empirical results show that the estimation of the parameters and states of the
models are more accurate and more efficient in terms of computational time via
PSLO rather than the PF.
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